STL源代码剖析 容器 stl_vector.h
本文为senlie原创。转载请保留此地址:http://blog.csdn.net/zhengsenlie
vector
----------------------------------------------------------------------
描写叙述:
1.迭代器
vector 维护的是一个连续线性空间。它的迭代器是普通指针。
能满足 RandomAccessIterator 全部必要条件:operator*, operator->,operator++,operator--,operator+,
operator-,operator+=,operator-=,operator[]
2.数据结构
vector所採用的数据结构是线性连续空间。
迭代器 start、finish分别表示配置得来的连续空间中眼下已经被使用的范围
迭代器 end_of_storage 指向整块连续空间的尾端
添加新元素时。假设走过当时的容量,则容量会扩充至两倍。
假设两倍容量仍不足,就扩张至足够大的容量。
扩充容量的过程为:又一次配置、元素移动、释放原空间
所谓动态添加大小,并非在原空间之后接续新空间,由于无法保证原空间之后
尚有可供配置的空间。因此。对 vector 的不论什么操作。一旦引起空间又一次配置,
指向原 vector 的全部迭代器就失效了。
演示样例:
vector<int> V;
V.insert(V.begin(), 3);
assert(V.size() == 1 && V.capacity() >= 1 && V[0] == 3);
源代码:
#ifndef __SGI_STL_INTERNAL_VECTOR_H
#define __SGI_STL_INTERNAL_VECTOR_H __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif template <class T, class Alloc = alloc>
class vector {
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type* iterator; //vector 的迭代器是个原生的指针
typedef const value_type* const_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_iterator<const_iterator, value_type, const_reference,
difference_type> const_reverse_iterator;
typedef reverse_iterator<iterator, value_type, reference, difference_type>
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
typedef simple_alloc<value_type, Alloc> data_allocator; //连续空间?
iterator start; //表示眼下使用空间的头
iterator finish; //表示眼下使用空间的尾
iterator end_of_storage; //表示眼下可用空间的尾
void insert_aux(iterator position, const T& x);
void deallocate() {
if (start) data_allocator::deallocate(start, end_of_storage - start);
}
// 填充并予以初始化
void fill_initialize(size_type n, const T& value) {
start = allocate_and_fill(n, value);
finish = start + n;
end_of_storage = finish;
}
public:
iterator begin() { return start; }
const_iterator begin() const { return start; }
iterator end() { return finish; }
const_iterator end() const { return finish; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
size_type size() const { return size_type(end() - begin()); }
size_type max_size() const { return size_type(-1) / sizeof(T); }
size_type capacity() const { return size_type(end_of_storage - begin()); }
bool empty() const { return begin() == end(); }
reference operator[](size_type n) { return *(begin() + n); }
const_reference operator[](size_type n) const { return *(begin() + n); } vector() : start(0), finish(0), end_of_storage(0) {}
//构造函数,同意指定 vector 大小 n 和初值 value
vector(size_type n, const T& value) { fill_initialize(n, value); }
vector(int n, const T& value) { fill_initialize(n, value); }
vector(long n, const T& value) { fill_initialize(n, value); }
explicit vector(size_type n) { fill_initialize(n, T()); } vector(const vector<T, Alloc>& x) {
start = allocate_and_copy(x.end() - x.begin(), x.begin(), x.end());
finish = start + (x.end() - x.begin());
end_of_storage = finish;
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
vector(InputIterator first, InputIterator last) :
start(0), finish(0), end_of_storage(0)
{
range_initialize(first, last, iterator_category(first));
}
#else /* __STL_MEMBER_TEMPLATES */
vector(const_iterator first, const_iterator last) {
size_type n = 0;
distance(first, last, n);
start = allocate_and_copy(n, first, last);
finish = start + n;
end_of_storage = finish;
}
#endif /* __STL_MEMBER_TEMPLATES */
~vector() {
destroy(start, finish);
deallocate();
}
vector<T, Alloc>& operator=(const vector<T, Alloc>& x);
void reserve(size_type n) {
if (capacity() < n) {
const size_type old_size = size();
iterator tmp = allocate_and_copy(n, start, finish);
destroy(start, finish);
deallocate();
start = tmp;
finish = tmp + old_size;
end_of_storage = start + n;
}
}
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(end() - 1); }
const_reference back() const { return *(end() - 1); }
//
void push_back(const T& x) {
if (finish != end_of_storage) { //检查是否还有备用空间
construct(finish, x); //有,直接在备用空间上构造元素
++finish; //调整迭代器 finish
}
else
insert_aux(end(), x); //没有,扩充空间(又一次配置、元素移动、释放原空间)
}
void swap(vector<T, Alloc>& x) {
__STD::swap(start, x.start);
__STD::swap(finish, x.finish);
__STD::swap(end_of_storage, x.end_of_storage);
}
iterator insert(iterator position, const T& x) {
size_type n = position - begin();
if (finish != end_of_storage && position == end()) {
construct(finish, x);
++finish;
}
else
insert_aux(position, x);
return begin() + n;
}
iterator insert(iterator position) { return insert(position, T()); }
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(iterator position, InputIterator first, InputIterator last) {
range_insert(position, first, last, iterator_category(first));
}
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator position,
const_iterator first, const_iterator last);
#endif /* __STL_MEMBER_TEMPLATES */ void insert (iterator pos, size_type n, const T& x);
void insert (iterator pos, int n, const T& x) {
insert(pos, (size_type) n, x);
}
void insert (iterator pos, long n, const T& x) {
insert(pos, (size_type) n, x);
} void pop_back() {
--finish; //将尾端标记往前移一格,表示将放弃尾端元素
destroy(finish); //析构尾端元素
}
//清除 position 指向的元素
iterator erase(iterator position) {
if (position + 1 != end())
copy(position + 1, finish, position);
--finish;
destroy(finish);
return position;
}
//清除[first, last)中的全部元素
iterator erase(iterator first, iterator last) {
iterator i = copy(last, finish, first); //将 [last, finish) 指示的元素拷贝至 first 迭代器开头的地方
destroy(i, finish); //析构[i, finish) 里的元素
finish = finish - (last - first); //调整 finish 指示的位置 last - first 表示清除掉了的元素个数
return first;
}
void resize(size_type new_size, const T& x) {
if (new_size < size())
erase(begin() + new_size, end());
else
insert(end(), new_size - size(), x);
}
void resize(size_type new_size) { resize(new_size, T()); }
//调用 erase 清除全部元素
void clear() { erase(begin(), end()); } protected:
//配置而后填充
iterator allocate_and_fill(size_type n, const T& x) {
iterator result = data_allocator::allocate(n); //配置 n 个元素空间
__STL_TRY {
uninitialized_fill_n(result, n, x); //全局函数。全依据 result 的类型特性(type traits)决定使用算法 fill_n() 或重复调用 construct() 来完毕任务
return result;
}
__STL_UNWIND(data_allocator::deallocate(result, n));
} #ifdef __STL_MEMBER_TEMPLATES
template <class ForwardIterator>
iterator allocate_and_copy(size_type n,
ForwardIterator first, ForwardIterator last) {
iterator result = data_allocator::allocate(n);
__STL_TRY {
uninitialized_copy(first, last, result);
return result;
}
__STL_UNWIND(data_allocator::deallocate(result, n));
}
#else /* __STL_MEMBER_TEMPLATES */
iterator allocate_and_copy(size_type n,
const_iterator first, const_iterator last) {
iterator result = data_allocator::allocate(n);
__STL_TRY {
uninitialized_copy(first, last, result);
return result;
}
__STL_UNWIND(data_allocator::deallocate(result, n));
}
#endif /* __STL_MEMBER_TEMPLATES */ #ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void range_initialize(InputIterator first, InputIterator last,
input_iterator_tag) {
for ( ; first != last; ++first)
push_back(*first);
} // This function is only called by the constructor. We have to worry
// about resource leaks, but not about maintaining invariants.
template <class ForwardIterator>
void range_initialize(ForwardIterator first, ForwardIterator last,
forward_iterator_tag) {
size_type n = 0;
distance(first, last, n);
start = allocate_and_copy(n, first, last);
finish = start + n;
end_of_storage = finish;
} template <class InputIterator>
void range_insert(iterator pos,
InputIterator first, InputIterator last,
input_iterator_tag); template <class ForwardIterator>
void range_insert(iterator pos,
ForwardIterator first, ForwardIterator last,
forward_iterator_tag); #endif /* __STL_MEMBER_TEMPLATES */
}; template <class T, class Alloc>
inline bool operator==(const vector<T, Alloc>& x, const vector<T, Alloc>& y) {
return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
} template <class T, class Alloc>
inline bool operator<(const vector<T, Alloc>& x, const vector<T, Alloc>& y) {
return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
} #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class T, class Alloc>
inline void swap(vector<T, Alloc>& x, vector<T, Alloc>& y) {
x.swap(y);
} #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ template <class T, class Alloc>
vector<T, Alloc>& vector<T, Alloc>::operator=(const vector<T, Alloc>& x) {
if (&x != this) {
if (x.size() > capacity()) {
iterator tmp = allocate_and_copy(x.end() - x.begin(),
x.begin(), x.end());
destroy(start, finish);
deallocate();
start = tmp;
end_of_storage = start + (x.end() - x.begin());
}
else if (size() >= x.size()) {
iterator i = copy(x.begin(), x.end(), begin());
destroy(i, finish);
}
else {
copy(x.begin(), x.begin() + size(), start);
uninitialized_copy(x.begin() + size(), x.end(), finish);
}
finish = start + x.size();
}
return *this;
} template <class T, class Alloc>
void vector<T, Alloc>::insert_aux(iterator position, const T& x) {
if (finish != end_of_storage) { // 不是备用空间不够才会调用 insert_aux 来插入元素吗? 为什么还会出现 finish != end_of_storage 的情况 ?
// --> 除了 push_back 不够空间时会调用 insert_aux,正常的 insert 也是调用 insert_aux 实现的。 //为什么不直接 copy_backward(position, finish - 1, finish)。 然后 *position = x_copy 呢?
construct(finish, *(finish - 1));
++finish;
T x_copy = x;
copy_backward(position, finish - 2, finish - 1);
*position = x_copy;
}
else { //无备用空间 position == finish
const size_type old_size = size();
const size_type len = old_size != 0 ? 2 * old_size : 1;
//假设原大小为0。则配置1个元素大小的空间,否则配置原大小两倍的空间
iterator new_start = data_allocator::allocate(len); //实际配置
iterator new_finish = new_start;
__STL_TRY {
//将原空间的全部内容拷贝到新空间 positition
new_finish = uninitialized_copy(start, position, new_start);
//为新元素设定初值 x
construct(new_finish, x);
//调整迭代器 finish
++new_finish;
//??我认为以下这行代码没用。由于无备用空间的情况,position == finish
new_finish = uninitialized_copy(position, finish, new_finish);
} # ifdef __STL_USE_EXCEPTIONS
catch(...) { //异常居然能够用三个小点 ... ? ? //回滚
destroy(new_start, new_finish);
data_allocator::deallocate(new_start, len);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */ //析构并释放原空间
destroy(begin(), end());
deallocate();
//调整迭代器。指向新 vector
start = new_start;
finish = new_finish;
end_of_storage = new_start + len;
}
} template <class T, class Alloc>
//从 position 開始,插入 n 个元素,元素初值为 x
void vector<T, Alloc>::insert(iterator position, size_type n, const T& x) {
if (n != 0) { // 当 n != 0 才进行以下全部操作
if (size_type(end_of_storage - finish) >= n) { //备用空间大于新增元素个数
T x_copy = x;
const size_type elems_after = finish - position; //插入点之后的的现有元素个数
iterator old_finish = finish;
if (elems_after > n) { //"插入点之后的的现有元素个数"大于"新增元素个数"
//空间还没初始化时用 uninitialized_copy 。 已经初始化了用 copy_backward
uninitialized_copy(finish - n, finish, finish);
finish += n;
copy_backward(position, old_finish - n, old_finish);
fill(position, position + n, x_copy); //从插入点開始填入新值
}
else { //"插入点之后的的现有元素个数"小于"新增元素个数"
uninitialized_fill_n(finish, n - elems_after, x_copy);
finish += n - elems_after;
uninitialized_copy(position, old_finish, finish);
finish += elems_after;
fill(position, old_finish, x_copy);
}
}
else {//备用空间小于新增元素个数
const size_type old_size = size();
// 首先决定新长度:旧长度的两倍或旧长度+新元素个数,这两个中取最大值
const size_type len = old_size + max(old_size, n);
iterator new_start = data_allocator::allocate(len);
iterator new_finish = new_start;
__STL_TRY {
//先用 uninitialized_copy 将旧 vector 的插入点之前的元素拷贝到新空间
new_finish = uninitialized_copy(start, position, new_start);
//再用 uninitialized_fill_n 将新增元素填入新空间
new_finish = uninitialized_fill_n(new_finish, n, x);
//最后再用 uninitialized_copy 将旧 vector 的插入点之后的元素拷贝到新空间
new_finish = uninitialized_copy(position, finish, new_finish);
}
# ifdef __STL_USE_EXCEPTIONS
catch(...) {
destroy(new_start, new_finish);
data_allocator::deallocate(new_start, len);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
//清除并释放旧的 vector
destroy(start, finish);
deallocate();
//调整标记
start = new_start;
finish = new_finish;
end_of_storage = new_start + len;
}
}
} #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc> template <class InputIterator>
void vector<T, Alloc>::range_insert(iterator pos,
InputIterator first, InputIterator last,
input_iterator_tag) {
for ( ; first != last; ++first) {
pos = insert(pos, *first);
++pos;
}
} template <class T, class Alloc> template <class ForwardIterator>
void vector<T, Alloc>::range_insert(iterator position,
ForwardIterator first,
ForwardIterator last,
forward_iterator_tag) {
if (first != last) {
size_type n = 0;
distance(first, last, n);
if (size_type(end_of_storage - finish) >= n) {
const size_type elems_after = finish - position;
iterator old_finish = finish;
if (elems_after > n) {
uninitialized_copy(finish - n, finish, finish);
finish += n;
copy_backward(position, old_finish - n, old_finish);
copy(first, last, position);
}
else {
ForwardIterator mid = first;
advance(mid, elems_after);
uninitialized_copy(mid, last, finish);
finish += n - elems_after;
uninitialized_copy(position, old_finish, finish);
finish += elems_after;
copy(first, mid, position);
}
}
else {
const size_type old_size = size();
const size_type len = old_size + max(old_size, n);
iterator new_start = data_allocator::allocate(len);
iterator new_finish = new_start;
__STL_TRY {
new_finish = uninitialized_copy(start, position, new_start);
new_finish = uninitialized_copy(first, last, new_finish);
new_finish = uninitialized_copy(position, finish, new_finish);
}
# ifdef __STL_USE_EXCEPTIONS
catch(...) {
destroy(new_start, new_finish);
data_allocator::deallocate(new_start, len);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
destroy(start, finish);
deallocate();
start = new_start;
finish = new_finish;
end_of_storage = new_start + len;
}
}
} #else /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc>
void vector<T, Alloc>::insert(iterator position,
const_iterator first,
const_iterator last) {
if (first != last) {
size_type n = 0;
distance(first, last, n);
if (size_type(end_of_storage - finish) >= n) {
const size_type elems_after = finish - position;
iterator old_finish = finish;
if (elems_after > n) {
uninitialized_copy(finish - n, finish, finish);
finish += n;
copy_backward(position, old_finish - n, old_finish);
copy(first, last, position);
}
else {
uninitialized_copy(first + elems_after, last, finish);
finish += n - elems_after;
uninitialized_copy(position, old_finish, finish);
finish += elems_after;
copy(first, first + elems_after, position);
}
}
else {
const size_type old_size = size();
const size_type len = old_size + max(old_size, n);
iterator new_start = data_allocator::allocate(len);
iterator new_finish = new_start;
__STL_TRY {
new_finish = uninitialized_copy(start, position, new_start);
new_finish = uninitialized_copy(first, last, new_finish);
new_finish = uninitialized_copy(position, finish, new_finish);
}
# ifdef __STL_USE_EXCEPTIONS
catch(...) {
destroy(new_start, new_finish);
data_allocator::deallocate(new_start, len);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
destroy(start, finish);
deallocate();
start = new_start;
finish = new_finish;
end_of_storage = new_start + len;
}
}
} #endif /* __STL_MEMBER_TEMPLATES */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_VECTOR_H */ // Local Variables:
// mode:C++
// End:
STL源代码剖析 容器 stl_vector.h的更多相关文章
- STL源代码剖析 容器 stl_hashtable.h
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie hashtable ------------------------------------ ...
- STL源代码剖析 容器 stl_map.h
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie map ------------------------------------------ ...
- STL源代码剖析 容器 stl_list.h
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie list ----------------------------------------- ...
- STL源代码剖析 容器 stl_stack.h
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie stack ---------------------------------------- ...
- STL源代码剖析 容器 stl_deque.h
本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie deque ---------------------------------------- ...
- 《STL源代码剖析》---stl_deque.h阅读笔记(2)
看完,<STL源代码剖析>---stl_deque.h阅读笔记(1)后.再看代码: G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_deque. ...
- 《STL源代码剖析》---stl_alloc.h阅读笔记
这一节是讲空间的配置与释放,但不涉及对象的构造和析构,仅仅是解说对象构造前空前的申请以及对象析构后空间怎么释放. SGI版本号的STL对空间的的申请和释放做了例如以下考虑: 1.向堆申请空间 2.考虑 ...
- 《STL源代码剖析》---stl_set.h阅读笔记
SET是STL中的标准容器,SET里面的元素会依据键值自己主动排序,它不像map那样拥有实值value和键值key的相应,set仅仅有实值.SET的底层实现时RB-tree,当插入到RB-tree中后 ...
- 《STL源代码剖析》---stl_hash_set.h阅读笔记
STL仅仅规定接口和复杂度,对于详细实现不作要求.set大多以红黑树实现,但STL在标准规格之外提供了一个所谓的hash_set,以hash table实现.hash_set的接口,hash_tabl ...
随机推荐
- 问题:viewController不会调用dealloc()不会销毁
问题 在调试程序时,我从ViewController A push进 ViewController B,在从B back时发现程序不会执行B里面的dealloc(),很诡异的问题,因为按理说此时点击b ...
- 股票交易(bzoj 1855)
Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...
- 【linux命令】lscpu,/etc/cpuinfo详解
lscpu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 i2000:~ # lscpu Architecture: ...
- Berkely DB Java Edition学习笔记
Berkely DB对于高并发.要求速度快的应用来说是个不错的选择,mysql就是用BDB实现的(mysql的后台) ,mysql快,BDB比mysql还要快N倍.BDB是一种嵌入式的.非关系数据库, ...
- android基本控件学习-----EditText
EditText的讲解 一.<实例一>:用户登录 <?xml version="1.0" encoding="utf-8"?> < ...
- 让你的man手册显示与众不同
在~/.bashrc中加入如下代码: export LESS_TERMCAP_mb=$'\E[01;31m' export LESS_TERMCAP_md=$'\E[01;31m' export LE ...
- dracut 基本介绍
dracut 维基 https://dracut.wiki.kernel.org/index.php/Main_Page http://www.360doc.com/content/13/042 ...
- LeetCode OJ-- Populating Next Right Pointers in Each Node
https://oj.leetcode.com/problems/populating-next-right-pointers-in-each-node/ 二叉树遍历的变种:树的节点多了个next指针 ...
- LeetCode OJ-- Maximum Depth of Binary Tree
https://oj.leetcode.com/problems/maximum-depth-of-binary-tree/ 求二叉树的最大深度 深度优先搜索 /** * Definition for ...
- Codeforces 691E Xor-sequences(矩阵加速DP)
题目链接 Xor-sequences 利用矩阵加速. 先预处理出当序列长度为$2$的时候的方案数. 也就是说这个序列起点是$a[i]$终点是$a[j]$且中间没有任何元素. 但是所求的$k$很大,序列 ...