J. Whistle's New Car
time limit per test

15 seconds

memory limit per test

512 megabytes

input

car.in

output

standard output

Whistle has bought a new car, which has an infinite fuel tank capacity.

He discovered an irregular country since it has n cities and there are exactly n - 1 roads between them, of course, all cities are connected. He is so much clever, he realized that the country is like a rooted tree of n nodes and node 1 is the root. Each city i has only one filling station by which he can fill his car's fuel tank in no more than Xi liter. Whistle liked the country very much, and he wants to know what the most attractive city in the country is. The attractiveness of the city i is defined by how much it’s reachable from other cities, in other words the attractiveness of city is the number of cities j that satisfies these condition:

  • City j is in the subtree of city i (except for city i itself).
  • Whistle will start at city j and will only fill his car’s fuel tank with Xj liters and never fill it again until he reach city i.
  • Whistle should be able to reach city i with non-negative fuel.

He knows the length of every road and that 1 Km will take exactly 1 liter on any road.

As you know, Whistle is very clever, but he is not that good at programming, so he asked you to help him. He wants to know the attractiveness of each city, so that he can decide which city to live in.

Input

The first line of input contains one integer T, the number of test cases.

The next line contains one integer (1 ≤ n ≤ 500, 000), The number of cities in the country.

The next line contains n integers (1 ≤ Xi ≤ 1, 000, 000, 000).

Each one of the next n - 1 line contains three integers ABC (1 ≤ A, B ≤ n and 1 ≤ C ≤ 1, 000, 000, 000), that means there is a road between city A and city B of length C.

Output

For each test case, output a line containing n integers, the attractiveness of each city.

Example
input
1
4
5 10 5 10
1 2 100
2 3 5
3 4 5
output
0 2 1 0
Note

Large I/O files. Please consider using fast input/output methods.

设dis[i]表示从根节点1走到第 i个节点的路径长度。

那么任意的路径u-->v(前提是u是v的祖先,不然要用lca,这里不需要)可以表示为dis[v] - dis[u]

那么如果v能走回到u,则需要a[v] >= dis[v] - dis[u],即是dis[v] - a[v] <= dis[u],其中dis[v] - a[v]是一个确定值。

那么题意转换成,对于每一个节点u,有一个值dis[u],问其子树中,有多少个节点,满足dis[sonNode] - a[sonNode] <= dis[u]的。

这里可以用dfs序,然后用区间第k大的线段树或者分块、离线BIT之类的数据结构维护。

但是注意到dis[]是关于深度递增的,就是越走到下面,dis越大,也就是单调。

那么dfs的时候,用个vector记录一下路径长度和节点id。二分找到第一个祖先,使得满足dis[sonNode] - a[sonNode] <= dis[u]

那么可以知道ans[那个祖先节点 ---- 当前节点的爸爸],这条路径上的贡献都要加1

其实也就是打标记。

和一维差不多,L....R中加上1等价于sum[L] += 1, sum[R + 1] -= 1

这里一样,sum[当前节点的爸爸] += 1, sum[第一个满足的祖先的爸爸] -= 1

不能从上到下打标记,因为儿子数目不确定,而爸爸是确定的。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = + ;
struct Edge {
int u, v, tonext, len;
}e[maxn * ];
int first[maxn], num;
int a[maxn];
void addEdge(int u, int v, int w) {
++num;
e[num].u = u, e[num].v = v, e[num].len = w;
e[num].tonext = first[u];
first[u] = num;
}
int ans[maxn];
vector< pair<LL, int> > vc;
int vis[maxn], DFN;
void dfs(int cur, LL nowLen, int fa) {
ans[fa]++;
int pos = lower_bound(vc.begin(), vc.end(), make_pair(nowLen - a[cur], )) - vc.begin();
pos--; //去到第一个满足的的祖先的爸爸
if (pos >= ) {
ans[vc[pos].second]--;
}
vc.push_back(make_pair(nowLen, cur));
for (int i = first[cur]; i; i = e[i].tonext) {
int v = e[i].v;
if (v == fa) continue;
dfs(v, nowLen + e[i].len, cur);
ans[cur] += ans[v];
}
vc.pop_back();
}
void work() {
num = ;
++DFN;
memset(first, false, sizeof first);
memset(ans, , sizeof ans);
int n;
scanf("%d", &n);
for (int i = ; i <= n; ++i) cin >> a[i];
for (int i = ; i <= n - ; ++i) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addEdge(u, v, w);
addEdge(v, u, w);
}
dfs(, , );
for (int i = ; i <= n; ++i) {
printf("%d ", ans[i]);
}
printf("\n");
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
freopen("car.in", "r", stdin);
int t;
scanf("%d", &t);
while (t--) work();
return ;
}

Gym - 101147J Whistle's New Car 树上差分的更多相关文章

  1. Codeforces Gym - 101147J Whistle's New Car

    Discription Statements Whistle has bought a new car, which has an infinite fuel tank capacity. He di ...

  2. Gym 101147J Whistle's New Car(dfs)

    https://vjudge.net/problem/Gym-101147J 题意: 有n个城市,每个城市有一个权值,表示在这个城市的加油站可以加多少油. 现在要计算每个城市i,有多少个城市j可以到达 ...

  3. 【树状数组】Gym - 101147J - Whistle's New Car

    题意就是对每个点i,统计在其子树内(不含自身),且depj-depi<=xj的点有多少个. 把点分别按照dep-x和dep进行排序,离线处理, 每次把dep-x小于等于当前dep值的点插入树状数 ...

  4. 【BZOJ-4326】运输计划 树链剖分 + 树上差分 + 二分

    4326: NOIP2015 运输计划 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 703  Solved: 461[Submit][Status] ...

  5. [luogu P3128][USACO15DEC]Max Flow [LCA][树上差分]

    题目描述 Farmer John has installed a new system of  pipes to transport milk between the  stalls in his b ...

  6. 树上差分 (瞎bb) [树上差分][LCA]

    做noip2015的运输计划写了好久好久写不出来   QwQ 于是先来瞎bb一下树上差分    混积分 树上差分有2个常用的功能: (1)记录从点i到i的父亲这条路径走过几次 (2)将每条路径(s,t ...

  7. [填坑]树上差分 例题:[JLOI2014]松鼠的新家(LCA)

    今天算是把LCA这个坑填上了一点点,又复习(其实是预习)了一下树上差分.其实普通的差分我还是会的,树上的嘛,也是懂原理的就是没怎么打过. 我们先来把树上差分能做到的看一下: 1.找所有路径公共覆盖的边 ...

  8. 【NOIP2016】【LCA】【树上差分】【史诗级难度】天天爱跑步

    学弟不是说要出丧题吗>>所以我就研究了1天lca又研究了1天tj然后研究了一天天天爱跑步,终于写了出来.(最后的平均用时为240ms...比学弟快了1倍...) 题意:给你颗树,然后有m个 ...

  9. BZOJ_4238_电压_树上差分+dfs树

    BZOJ_4238_电压_树上差分+dfs树 Description 你知道Just Odd Inventions社吗?这个公司的业务是“只不过是奇妙的发明(Just Odd Inventions)” ...

随机推荐

  1. zabbix常用命令

    1. 查看mysql 各数据库大小命令 "Database Size in MB" FROM information_schema.TABLES GROUP BY table_sc ...

  2. Java聊天室[长轮询]

    今天看到有人分享java实现的聊天室,想起很久以前还在热衷于java的时候也做过一个web聊天室,不拿出来晒晒,可能再也不为人知了,单纯是一个兴趣作品,稳定性不好,也没有考虑连接数和并发的问题,拿出来 ...

  3. static静态数据的初始化

    package com.demo.book; public class StaticInitialization { static Table table = new Table(); static ...

  4. adb pull / push

    刚才搞了半天想pull,就是pull不成,如图: 看出哪里有问题了吗? 问题就是我不该在shell里面运行adb pull! 正确的做法: 在任意一处打开命令行比如图中的桌面, adb pull /s ...

  5. P1014 Cantor表

    洛谷 p1014 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2 ...

  6. cordova 使用H5混合开发APP

    cordova 中文官网 http://cordova.axuer.com/docs/zh-cn/latest/

  7. Day01:Python入门

    一.编程与编程语言 编程的目的是将人类的思想流程按照某种能够被计算机识别的表达方式传递给计算机,从而让计算机能像人脑一样自动执行工作. 能被计算机所识别的表达方式是编程语言,python就是一门编程语 ...

  8. HashMap为什么比数组查询快

    通常数组不直接保存值,而是通过保存值的list.然后对list中的“值”使用equals方法比较,这部分查询速度自然慢.但是如果有好的散列函数,数组的每个位置就只有较少的“值”.因此,不是查询所有的l ...

  9. SyntaxError: can't assign to operator

    变量名不能有'-'

  10. 运用Eclipse的Working Set,界面清爽多了

    使用Eclipse的Working Set,界面清爽多了 想必大家的Eclipse里也会有这么多得工程...... 每次工作使用到的项目肯定不会太多...... 每次从这么大数量的工程当中找到自己要使 ...