SVD分解的理解
对称阵A
相应的,其对应的映射也分解为三个映射。现在假设有x向量,用A将其变换到A的列空间中,那么首先由U'先对x做变换:
由于正交阵“ U的逆=U‘ ”,对于两个空间来讲,新空间下的“ 基E' 坐标 x' ,原空间E 坐标x ”有如下关系
EX=E'X' ===>
X=E'X' ===>
X'=(E'的逆)x ==>
x向量在新的“基”下的新坐标 (E的转置)X;
1、那么对于上式UTx先可以理解为:将x用A的所有特征向量表示为:
则通过第一个变换就可以把x表示为[a1 a2 ... am]':
2、紧接着,在新的坐标系表示下,由中间那个对角矩阵对新的向量坐标换,其结果就是将向量往各个轴方向拉伸或压缩:
如果A不是满秩的话,那么就是说对角阵的对角线上元素存在0,这时候就会导致维度退化,这样就会使映射后的向量落入m维空间的子空间中(塌缩的概念)。
3、最后一步U[],相当于将X按照A的空间下变化过后,在转回原坐标系表示!
那么对于SVD分解中,
正交基v选择为A'A的特征向量的,由于A'A是对称阵,v之间两两正交,
对v1,v2,...,vk进行扩展v(k+1),...,vn(这n-k个向量存在于A的零空间中,即Ax=0的解空间的基),使得v1,v2,...,vn为n维空间中的一组正交基,即
当k < i <= m时,对u1,u2,...,uk进行扩展u(k+1),...,um,使得u1,u2,...,um为m维空间中的一组正交基,即
A矩阵的奇异值分解:
AX=UEVTx,,,按照同上的理解,首先对x坐标转换,然后做对应效果的拉伸,
不过这里在一个A的作用下应该没有ATA的效果厉害所以只有sqrt作为对角元素,然后在使用U将表示转变回来!
参考:http://blog.csdn.net/zhongkejingwang/article/details/43053513
SVD分解的理解的更多相关文章
- SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...
- SVD分解技术数学解释
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...
- SVD分解技术详解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 对SVD奇异值分解的理解
首先推荐一篇博客,奇异值分解(SVD)原理详解及推导 - CSDN博客,讲解的很清楚.这里我谈谈自己的理解,方便以后回顾. 如果把向量理解为空间中的一个元素,那么矩阵可以理解为两个空间上的映射 ...
- opencv2.4中SVD分解的几种调用方法
原帖地址: http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html 在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解.奇异 ...
- 投影矩阵、最小二乘法和SVD分解
投影矩阵广泛地应用在数学相关学科的各种证明中,但是由于其概念比较抽象,所以比较难理解.这篇文章主要从最小二乘法的推导导出投影矩阵,并且应用SVD分解,写出常用的几种投影矩阵的形式. 问题的提出 已知有 ...
- 【机器学习】推荐系统、SVD分解降维
推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLS ...
- 机器学习中的矩阵方法04:SVD 分解
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...
- SVD分解 解齐次线性方程组
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r > 0) $,则矩阵 ...
随机推荐
- linux 下 异步IO
方法一:使用fcntl来置O_ASYNC位. 这个方法的效果是,当输入缓存中的输入数据就绪时(输入数据可读),内核向用F_SETOWN来绑定的那个进程发送SIGIO信号.此时程序应该用getchar等 ...
- PHP的json_encode()函数的引号
PHP的json_encode()函数的引号 (1)数组的索引和值都使用双引号 $a = ["id"=>1,"age"=>12,"name ...
- TStringList的Find,IndexOf和Sort
procedure TForm1.Button1Click(Sender: TObject); var MyList: TStringList; begin MyList := TStringList ...
- formValidator阻止提交跳转
formValidator这个前台校验插件非常好用,其中有几个很有特点的方法可以单独提出使用,效果非常棒这里要说的是其核心方法之一,阻止提交动作,先校验,校验成功再执行提交动作 $("#ph ...
- 从源码解析 Spring JDBC 异常抽象
初入学习 JDBC 操作数据库,想必大家都写过下面的代码: 数据库为:H2 如果需要处理特定 SQL 异常,比如 SQL 语句错误,这个时候我们应该怎么办? 查看 SQLException 源码,我们 ...
- DBUtils工具类学习一
Commons DbUtils是Apache组织提供的一个对JDBC进行简单封装的开源工具类库,使用它能够简化JDBC应用程序的开发,同时也不会影响程序的性能 1.特征 DBUtils是java编程中 ...
- CODECHEF Oct. Challenge 2014 Children Trips
@(XSY)[分塊, 倍增] Description There's a new trend among Bytelandian schools. The "Byteland Tourist ...
- JavaEETest
原文:https://github.com/lenve/JavaEETest
- HDU 5289 Assignment(单调队列)
题意:给T足数据,然后每组一个n和k,表示n个数,k表示最大同意的能力差,接下来n个数表示n个人的能力,求能力差在k之内的区间有几个 分析:维护一个区间的最大值和最小值,使得他们的差小于k,于是採用单 ...
- 纯JS设置首页,增加收藏,获取URL參数,解决中文乱码
雪影工作室版权全部,转载请注明[http://blog.csdn.net/lina791211] 1.前言 纯Javascript 设置首页,增加收藏. 2.设置首页 // 设置为主页 functio ...