SVD分解的理解
对称阵A
相应的,其对应的映射也分解为三个映射。现在假设有x向量,用A将其变换到A的列空间中,那么首先由U'先对x做变换:
由于正交阵“ U的逆=U‘ ”,对于两个空间来讲,新空间下的“ 基E' 坐标 x' ,原空间E 坐标x ”有如下关系
EX=E'X' ===>
X=E'X' ===>
X'=(E'的逆)x ==>
x向量在新的“基”下的新坐标 (E的转置)X;
1、那么对于上式UTx先可以理解为:将x用A的所有特征向量表示为:
则通过第一个变换就可以把x表示为[a1 a2 ... am]':
2、紧接着,在新的坐标系表示下,由中间那个对角矩阵对新的向量坐标换,其结果就是将向量往各个轴方向拉伸或压缩:
如果A不是满秩的话,那么就是说对角阵的对角线上元素存在0,这时候就会导致维度退化,这样就会使映射后的向量落入m维空间的子空间中(塌缩的概念)。
3、最后一步U[],相当于将X按照A的空间下变化过后,在转回原坐标系表示!
那么对于SVD分解中,
正交基v选择为A'A的特征向量的,由于A'A是对称阵,v之间两两正交,
对v1,v2,...,vk进行扩展v(k+1),...,vn(这n-k个向量存在于A的零空间中,即Ax=0的解空间的基),使得v1,v2,...,vn为n维空间中的一组正交基,即
当k < i <= m时,对u1,u2,...,uk进行扩展u(k+1),...,um,使得u1,u2,...,um为m维空间中的一组正交基,即
A矩阵的奇异值分解:
AX=UEVTx,,,按照同上的理解,首先对x坐标转换,然后做对应效果的拉伸,
不过这里在一个A的作用下应该没有ATA的效果厉害所以只有sqrt作为对角元素,然后在使用U将表示转变回来!
参考:http://blog.csdn.net/zhongkejingwang/article/details/43053513
SVD分解的理解的更多相关文章
- SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...
- SVD分解技术数学解释
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...
- SVD分解技术详解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 对SVD奇异值分解的理解
首先推荐一篇博客,奇异值分解(SVD)原理详解及推导 - CSDN博客,讲解的很清楚.这里我谈谈自己的理解,方便以后回顾. 如果把向量理解为空间中的一个元素,那么矩阵可以理解为两个空间上的映射 ...
- opencv2.4中SVD分解的几种调用方法
原帖地址: http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html 在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解.奇异 ...
- 投影矩阵、最小二乘法和SVD分解
投影矩阵广泛地应用在数学相关学科的各种证明中,但是由于其概念比较抽象,所以比较难理解.这篇文章主要从最小二乘法的推导导出投影矩阵,并且应用SVD分解,写出常用的几种投影矩阵的形式. 问题的提出 已知有 ...
- 【机器学习】推荐系统、SVD分解降维
推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLS ...
- 机器学习中的矩阵方法04:SVD 分解
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...
- SVD分解 解齐次线性方程组
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r > 0) $,则矩阵 ...
随机推荐
- HTTP PUT方法和POST方法的区别
这两个方法看起来都是讲一个资源附加到服务器端的请求,但其实是不一样的.一些狭窄的意见认为,POST方法用来创建资源,而PUT方法则用来更新资源.这个说法本身没有问题,但是并没有从根本上解释了二者的区别 ...
- AC日记——狼抓兔子 bzoj 1001
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...
- Spring Cloud系列文,Feign整合Ribbon和Hysrix
在本博客之前的Spring Cloud系列里,我们讲述了Feign的基本用法,这里我们将讲述下Feign整合Ribbon实现负载均衡以及整合Hystrix实现断路保护效果的方式. 1 准备Eureka ...
- jenkins按版本发布maven项目
1.先为java这个项目创建三个版本 vim pom.xml vim src/main/java/com/ghz/testweb/App.java git add . git commit -m &q ...
- vue常用指命
1.v-text:用于更新标签包含的文本,作用和{{}}的效果一样. 2.v-html:绑定一些包含html代码的数据在视图上. 3.v-show:用来控制元素的display属性,和显示隐藏有关.v ...
- Linux Perf Probes for Oracle Tracing
Luca Canali on 21 Jan 2016 Topic: this post is about Linux perf and uprobes for tracing and profilin ...
- Maven plugin提示错误“Plugin execution not covered by lifecycle configuration”
myeclipse在其POM文件的一处提示出错如下: Plugin execution not covered by lifecycle configuration: org.apache.maven ...
- ARC forbids Objective-C objects in structs or unions
解决方法有二种: 1.在出错的地方加入__unsafe_unretained 2.关闭系统ARC.1.点击project 2.点击Build Setting 3.找到其以下的Objetive ...
- -webkit-transform:translate3d(0,0,0)触发GPU加速,让网页动画更流畅
前段时间,依照美拍的视频效果写了一个效果类似的网页版的动画. 电脑上安装了三种浏览器:IE.Chrome.Firefox.分别作了測试,结果显示Chrome在这方面的渲染效果最差.常常出现卡顿现象.f ...
- Linux mm相关的问题
[S]为什么High MEM是从896M開始的? As the running kernel needs these functions, a region of at least VMALLOC_R ...