思维难度不大,关键考代码实现能力。一些细节还是很妙的。

Description

  一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意
两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,
则称G'是G的一个导出子图。若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。若G'是G所有半连通子图
中包含节点数最多的,则称G'是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K
,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。

Input

  第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整
数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。N ≤1
00000, M ≤1000000;对于100%的数据, X ≤10^8

Output

  应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.

Sample Input

6 6 20070603
1 2
2 1
1 3
2 4
5 6
6 4

Sample Output

3
3

题目分析

首先来分析一下题目给的约束条件到底在描述一个什么东西。

半连通子图?

乍一看好像“半连通子图”是个非常麻烦的东西,但是显然一个环肯定是一个半连通子图,于是我们可以先缩点。

缩完点之后就变成一个DAG了,这时多画几个图就会发现,若一个子图是半连通子图,则它必定是一条链。这个其实是挺显然的,这里就不用形式化的语言描述了。

于是求最大半连通子图就变成了求:缩点后,求有向图带点权的最长链。

方案数

那么DAG求最长链很容易,记忆化搜索或者拓扑排序都可以。求方案数的话,也就是类似dp的方法,用$g[i]$表示以$i$为终点最长链的方案数,转移起来也挺方便的。

对了为了统计方案数,连通块之间的连边需要去重。

从黄学长博客上学到一种挺巧妙的去重方法(虽然说知道后很简单,但是还是很妙的),就是对于$(u,v)$,每次操作完记录$vis[v]=u$,若遇到$vis[v]=u$则退出。

于是就变成了:tarjan+拓扑+dp的板子汇总题

我是把之前写的tarjan板子套上去了,所以有点长……都3k了

 #include<bits/stdc++.h>
typedef long long ll;
const int maxn = ;
const int maxm = ; int n,m;
int deg[maxn],vis[maxn],q[maxn],qHead,qTail;
int head[maxn],nxt[maxm],edges[maxm],edgeTot;
ll p,col[maxn],cols,size[maxn],f[maxn],g[maxn];
ll mx,cnt; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
namespace tarjanSpace
{
int stk[maxn],cnt;
int a[maxn],dfn[maxn],low[maxn],tim;
int edgeTot,edges[maxm],nxt[maxm],head[maxn];
void tarjan(int now)
{
dfn[now] = low[now] = ++tim, stk[++cnt] = now;
for (int i=head[now]; i!=-; i=nxt[i])
{
int v = edges[i];
if (!dfn[v])
tarjan(v), low[now] = std::min(low[now], low[v]);
else if (!col[v])
low[now] = std::min(low[now], dfn[v]);
}
if (low[now]==dfn[now])
{
::col[now] = ++::cols, ::size[cols] = ;
for (; stk[cnt]!=now; cnt--, ::size[cols]++)
::col[stk[cnt]] = ::cols;
cnt--;
}
}
inline void addedgeInner(int u, int v)
{
edges[++edgeTot] = v, nxt[edgeTot] = head[u], head[u] = edgeTot;
}
inline void addedgeOuter(int u, int v)
{
deg[v]++, ::edges[++::edgeTot] = v, ::nxt[::edgeTot] = ::head[u], ::head[u] = ::edgeTot;
}
void dealOuter()
{
for (int i=; i<=n; i++)
{
int u = col[i];
for (int j=head[i]; j!=-; j=nxt[j])
if (u!=col[edges[j]])
addedgeOuter(u, col[edges[j]]);
}
cols--;
}
void solve()
{
memset(head, -, sizeof head);
cnt = tim = edgeTot = ;
for (int i=; i<=n; i++) addedgeInner(, i);
for (int i=; i<=m; i++)
{
int u = read(), v = read();
addedgeInner(u, v);
}
tarjan();
dealOuter();
}
}
void topoSort()
{
qHead = , qTail = ;
for (int i=; i<=cols; i++)
{
if (!deg[i]) q[++qTail] = i;
f[i] = size[i], g[i] = ;
}
while (qHead!=qTail)
{
int u = q[++qHead];
for (int i=head[u]; i!=-; i=nxt[i])
{
int v = edges[i];
if ((--deg[v])==) q[++qTail] = v;
if (vis[v]==u) continue;
if (f[v] < f[u]+size[v])
f[v] = f[u]+size[v], g[v] = g[u];
else if (f[v]==f[u]+size[v])
g[v] = (g[v]+g[u])%p;
vis[v] = u;
}
}
}
int main()
{
memset(head, -, sizeof head);
n = read(), m = read(), p = read();
tarjanSpace::solve();
topoSort();
for (int i=; i<=cols; i++)
if (f[i] > mx)
mx = f[i], cnt = g[i];
else if (f[i]==mx)
cnt = (cnt+g[i])%p;
printf("%lld\n%lld\n",mx,cnt);
return ;
}

END

【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图的更多相关文章

  1. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  2. BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)

    题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...

  3. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  4. BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】

    题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...

  5. BZOJ1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  6. 2018.11.06 bzoj1093: [ZJOI2007]最大半连通子图(缩点+拓扑排序)

    传送门 先将原图缩点,缩掉之后的点权就是连通块大小. 然后用拓扑排序统计最长链数就行了. 自己yyyyyy了一下一个好一点的统计方法. 把所有缩了之后的点都连向一个虚点. 然后再跑拓扑,这样最后虚点的 ...

  7. BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)

    发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...

  8. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

  9. [ZJOI2007]最大半连通子图(Tarjan,拓扑序DP)

    [ZJOI2007]最大半连通子图 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...

随机推荐

  1. cmd,bat和dos的区别

    区别 dos是磁盘操作系统(Disk Operating System),是个人计算机上的一类操作系统. bat是DOS命令,在任何dos环境下都可以使用. bat文件是dos下的批处理文件,批处理文 ...

  2. mysql整理(个人)

    注意:以下命令都是在Linux系统下执行的: 1.验证mysql是否安装成功: mysqladmin --version 2.连接mysql服务器: mysql -u root -p 之后输入密码 3 ...

  3. SpringBoot | SpringBoot启动错误

    Error starting ApplicationContext. To display the conditions report re-run your application with 'de ...

  4. [题解](区间质数筛)POJ_2689 Prime Distance

    区间筛素数:先筛出1~sqrt(R)的素数,然后对于每个询问只要用这些素数筛掉区间内的合数即可. 几个细节:1.特判和1有关的一些情况 2.每次减去L偏移量,数组只开区间大小 3.POJ无法使用万能头 ...

  5. python 基础(五) 迭代器与生成器

    迭代器和生成器 迭代器 iterator (1) 迭代对象: 可以直接作用于for循环的 称为可迭代对象(iterable)可以通过 isinstance 判断是否属于可迭代对象 可以直接作用于for ...

  6. Codeforces 1142E(图、交互)

    题目传送 官方题解说的很好了,剩下的就是读大佬代码了,前面是tarjan求SCC缩点图.我图论没学过,接下来删点是怎么操作看得有点头秃,直到我看到了%%%安德鲁何神仙的代码. 按照题面连通紫线以后,我 ...

  7. 安装dubbo的监控中心dubbo-monitor-simple

    1.下载dubbo-monitor-simple 2.修改配置指定注册中心地址 进入dubbo-monitor-simple\src\main\resources\conf目录修改 dubbo.pro ...

  8. javascript 流程控制及函数

    回顾 基本语法 在html的使用 <script></script> 注释 ///* */ 指令结束符 ;换行 输出 console.log()document.write() ...

  9. Arduino中数据类型转换 int转换为char 亲测好使,itoa()函数

    由于博主最近在做一个项目,需要采集不同传感器的数据,包括float型的HCHO,以及int型的PM2.5数据.但是最终向服务器上传的数据都得转换为char型才能发送,这是借鉴了一个github上面的实 ...

  10. spark常用参数

    val conf = new SparkConf().setAppName("WordCount_groupBy").setMaster("local") // ...