思维难度不大,关键考代码实现能力。一些细节还是很妙的。

Description

  一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意
两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G'=(V',E')满足V'?V,E'是E中所有跟V'有关的边,
则称G'是G的一个导出子图。若G'是G的导出子图,且G'半连通,则称G'为G的半连通子图。若G'是G所有半连通子图
中包含节点数最多的,则称G'是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K
,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。

Input

  第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整
数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。N ≤1
00000, M ≤1000000;对于100%的数据, X ≤10^8

Output

  应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.

Sample Input

6 6 20070603
1 2
2 1
1 3
2 4
5 6
6 4

Sample Output

3
3

题目分析

首先来分析一下题目给的约束条件到底在描述一个什么东西。

半连通子图?

乍一看好像“半连通子图”是个非常麻烦的东西,但是显然一个环肯定是一个半连通子图,于是我们可以先缩点。

缩完点之后就变成一个DAG了,这时多画几个图就会发现,若一个子图是半连通子图,则它必定是一条链。这个其实是挺显然的,这里就不用形式化的语言描述了。

于是求最大半连通子图就变成了求:缩点后,求有向图带点权的最长链。

方案数

那么DAG求最长链很容易,记忆化搜索或者拓扑排序都可以。求方案数的话,也就是类似dp的方法,用$g[i]$表示以$i$为终点最长链的方案数,转移起来也挺方便的。

对了为了统计方案数,连通块之间的连边需要去重。

从黄学长博客上学到一种挺巧妙的去重方法(虽然说知道后很简单,但是还是很妙的),就是对于$(u,v)$,每次操作完记录$vis[v]=u$,若遇到$vis[v]=u$则退出。

于是就变成了:tarjan+拓扑+dp的板子汇总题

我是把之前写的tarjan板子套上去了,所以有点长……都3k了

 #include<bits/stdc++.h>
typedef long long ll;
const int maxn = ;
const int maxm = ; int n,m;
int deg[maxn],vis[maxn],q[maxn],qHead,qTail;
int head[maxn],nxt[maxm],edges[maxm],edgeTot;
ll p,col[maxn],cols,size[maxn],f[maxn],g[maxn];
ll mx,cnt; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
namespace tarjanSpace
{
int stk[maxn],cnt;
int a[maxn],dfn[maxn],low[maxn],tim;
int edgeTot,edges[maxm],nxt[maxm],head[maxn];
void tarjan(int now)
{
dfn[now] = low[now] = ++tim, stk[++cnt] = now;
for (int i=head[now]; i!=-; i=nxt[i])
{
int v = edges[i];
if (!dfn[v])
tarjan(v), low[now] = std::min(low[now], low[v]);
else if (!col[v])
low[now] = std::min(low[now], dfn[v]);
}
if (low[now]==dfn[now])
{
::col[now] = ++::cols, ::size[cols] = ;
for (; stk[cnt]!=now; cnt--, ::size[cols]++)
::col[stk[cnt]] = ::cols;
cnt--;
}
}
inline void addedgeInner(int u, int v)
{
edges[++edgeTot] = v, nxt[edgeTot] = head[u], head[u] = edgeTot;
}
inline void addedgeOuter(int u, int v)
{
deg[v]++, ::edges[++::edgeTot] = v, ::nxt[::edgeTot] = ::head[u], ::head[u] = ::edgeTot;
}
void dealOuter()
{
for (int i=; i<=n; i++)
{
int u = col[i];
for (int j=head[i]; j!=-; j=nxt[j])
if (u!=col[edges[j]])
addedgeOuter(u, col[edges[j]]);
}
cols--;
}
void solve()
{
memset(head, -, sizeof head);
cnt = tim = edgeTot = ;
for (int i=; i<=n; i++) addedgeInner(, i);
for (int i=; i<=m; i++)
{
int u = read(), v = read();
addedgeInner(u, v);
}
tarjan();
dealOuter();
}
}
void topoSort()
{
qHead = , qTail = ;
for (int i=; i<=cols; i++)
{
if (!deg[i]) q[++qTail] = i;
f[i] = size[i], g[i] = ;
}
while (qHead!=qTail)
{
int u = q[++qHead];
for (int i=head[u]; i!=-; i=nxt[i])
{
int v = edges[i];
if ((--deg[v])==) q[++qTail] = v;
if (vis[v]==u) continue;
if (f[v] < f[u]+size[v])
f[v] = f[u]+size[v], g[v] = g[u];
else if (f[v]==f[u]+size[v])
g[v] = (g[v]+g[u])%p;
vis[v] = u;
}
}
}
int main()
{
memset(head, -, sizeof head);
n = read(), m = read(), p = read();
tarjanSpace::solve();
topoSort();
for (int i=; i<=cols; i++)
if (f[i] > mx)
mx = f[i], cnt = g[i];
else if (f[i]==mx)
cnt = (cnt+g[i])%p;
printf("%lld\n%lld\n",mx,cnt);
return ;
}

END

【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图的更多相关文章

  1. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  2. BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)

    题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...

  3. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  4. BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】

    题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...

  5. BZOJ1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  6. 2018.11.06 bzoj1093: [ZJOI2007]最大半连通子图(缩点+拓扑排序)

    传送门 先将原图缩点,缩掉之后的点权就是连通块大小. 然后用拓扑排序统计最长链数就行了. 自己yyyyyy了一下一个好一点的统计方法. 把所有缩了之后的点都连向一个虚点. 然后再跑拓扑,这样最后虚点的 ...

  7. BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)

    发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...

  8. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

  9. [ZJOI2007]最大半连通子图(Tarjan,拓扑序DP)

    [ZJOI2007]最大半连通子图 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...

随机推荐

  1. 阿里巴巴开源性能监控神器Arthas初体验

    如果问性能测试中最难的是哪部分,相信很多人会说“性能调优”.确实是这样,性能调优是一个非常复杂.技术含量很高的工作.涉及到的知识面很广.以我多年从业经验来看,在企业里,大多数的性能调优都是由开发架构师 ...

  2. 【OpenJ_Bailian - 2797】最短前缀(贪心)

    最短前缀 Descriptions: 一个字符串的前缀是从该字符串的第一个字符起始的一个子串.例如 "carbon"的字串是: "c", "ca&qu ...

  3. ES6高级使用技巧(reduce,filter篇)

    本周总结 这几天在写Echarts自定义需求的时候发现了,图形化算法和函数式编程的应用场景,很多时候我们现在学的东西并一定在当前的这种状态有用,但是兴趣吧,喜欢就去学呗,没准在日后的工作日常中用到了 ...

  4. 异常定义-Mybatis中的源码参考

    public class IbatisException extends RuntimeException { private static final long serialVersionUID = ...

  5. Eclipse - lombok的@Slf4j和@Data无效

    问题与分析 最近开始学习spring-boot框架,我用的是Eclipse,然后发现在使用到了lombok的@Data注解时,Eclipse会编译错误.@Data的作用是自动生成toString方法和 ...

  6. [題解]TYVJ_2032(搜索/最短路)

    搜索:https://www.cnblogs.com/SiriusRen/p/6532506.html?tdsourcetag=s_pctim_aiomsg 來自 SiriusRen 數據範圍小,考慮 ...

  7. JMETER通过java代码通过代码/ JMETER API实现示例进行负载测试

    本教程试图解释Jmeter的基本设计,功能和用法,Jmeter是用于在应用程序上执行负载测试的优秀工具.通过使用jmeter GUI,我们可以根据我们的要求为请求创建测试样本并执行具有多个用户负载的样 ...

  8. Java EE学习笔记(七)

    MyBatis的核心配置 1.MyBatis的核心对象 1).SqlSessionFactory是MyBatis框架中十分重要的对象,它是单个数据库映射关系经过编译后的内存镜像,其主要作用是创建Sql ...

  9. 1049 - Deg-route

    http://www.ifrog.cc/acm/problem/1049 这些数学题我一般都是找规律的.. 先暴力模拟了前面的那些,然后发现(x, y) = (x, y - 1) + (x - 1, ...

  10. handler 方法进不去,服务器上出现应用程序错误。此应用程序的当前自定义错误设置禁止远程查看

    HTTP/1.1 500 Internal Server ErrorCache-Control: privateContent-Type: text/html; charset=utf-8Server ...