DBSCANCLUSTER

DBSCAN(Density-basedspatial clustering ofapplications with noise)Martin.Ester, Hans-PeterKriegel等人于1996年提出的一种基于密度的空间的数据聚类方法,该算法是最常用的一种聚类方法[1,2]。该算法将具有足够密度区域作为距离中心,不断生长该区域.该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。该方法能在具有噪声的空间数据库中发现任意形状的簇,可将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类,优缺点总结如下:

优点:

(1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类;

(2)与K-MEANS比较起来,不需要输入要划分的聚类个数;

(3)聚类簇的形状没有偏倚;

(4)可以在需要时输入过滤噪声的参数。

缺点:

(1)当数据量增大时,要求较大的内存支持I/O消耗也很大;

(2)当空间聚类的密度不均匀、聚类间距差相差很大时,聚类质量较差,因为这种情况下参数MinPts和Eps选取困难。

(3)算法聚类效果依赖与距离公式选取,实际应用中常用欧式距离,对于高维数据,存在“维数灾难”。

基本概念:

(1)Eps邻域:给定对象半径Eps内的邻域称为该对象的Eps邻域;

(2)核心点(core point):如果对象的Eps邻域至少包含最小数目MinPts的对象,则称该对象为核心对象;

(3)边界点(edge point):边界点不是核心点,但落在某个核心点的邻域内;

(4)噪音点(outlier point):既不是核心点,也不是边界点的任何点;

(5)直接密度可达(directly density-reachable):给定一个对象集合D,如果p在q的Eps邻域内,而q是一个核心对象,则称对象p从对象q出发时是直接密度可达的;

(6)密度可达(density-reachable):如果存在一个对象链  p1, …,pi,.., pn,满足p1 = p 和pn = q,pi是从pi+1关于Eps和MinPts直接密度可达的,则对象p是从对象q关于Eps和MinPts密度可达的;

(7)密度相连(density-connected):如果存在对象O∈D,使对象p和q都是从O关于Eps和MinPts密度可达的,那么对象p到q是关于Eps和MinPts密度相连的。

(8)类(cluster):设非空集合,若满足:

(a),且从密度可达,那么。

(b)和密度相连。

的值。若该值选取过小,则稀疏簇中结果由于密度小于MinPts,从而被认为是边界点儿不被用于在类的进一步扩展;若该值过大,则密度较大的两个邻近簇可能被合并为同一簇。因此,该值是否设置适当会对聚类结果造成较大影响。

参考文献:

[1] https://en.wikipedia.org/wiki/DBSCAN

[2] EsterM, Kriegel H P, Sander J, et al. A density-based algorithm for discoveringclusters in large spatial databases with noise[C]//Kdd. 1996, 96(34): 226-231.

[3] https://wenku.baidu.com/view/ce3e324aa8956bec0975e3d5.html

http://blog.csdn.net/itplus/article/details/10088625

DBSCAN 聚类分析的更多相关文章

  1. DBSCAN

    DBSCAN,英文全写为Density-based spatial clustering of applications with noise ,是在 1996 年由Martin Ester, Han ...

  2. 8,聚类分析 fenxinhuag

    1.K-Means聚类分析 2.系统聚类分析 样本间常用距离: 类间常用距离: 3.DBSCAN聚类分析

  3. 从零开始搭建django前后端分离项目 系列一(技术选型)

    前言 最近公司要求基于公司的hadoop平台做一个关于电信移动网络的数据分析平台,整个项目需求大体分为四大功能模块:数据挖掘分析.报表数据查询.GIS地理化展示.任务监控管理.由于页面功能较复杂,所以 ...

  4. 吴裕雄 数据挖掘与分析案例实战(15)——DBSCAN与层次聚类分析

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfr ...

  5. 聚类算法:K均值、凝聚层次聚类和DBSCAN

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

  6. 常见聚类算法——K均值、凝聚层次聚类和DBSCAN比较

    聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...

  7. 5.无监督学习-DBSCAN聚类算法及应用

    DBSCAN方法及应用 1.DBSCAN密度聚类简介 DBSCAN 算法是一种基于密度的聚类算法: 1.聚类的时候不需要预先指定簇的个数 2.最终的簇的个数不确定DBSCAN算法将数据点分为三类: 1 ...

  8. 聚类分析K均值算法讲解

    聚类分析及K均值算法讲解 吴裕雄 当今信息大爆炸时代,公司企业.教育科学.医疗卫生.社会民生等领域每天都在产生大量的结构多样的数据.产生数据的方式更是多种多样,如各类的:摄像头.传感器.报表.海量网络 ...

  9. 【机器学习】DBSCAN Algorithms基于密度的聚类算法

    一.算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层 ...

随机推荐

  1. Python流程控制 if / for/ while

    在Python中没有switch语句 If语句 if condition: do sth elif condition: Do sth else: Do sth while语句有一个可选的else从句 ...

  2. 【原创】基于.NET的轻量级高性能 ORM - TZM.XFramework

    [前言] 接上一篇<[原创]打造基于Dapper的数据访问层>,Dapper在应付多表自由关联.分组查询.匿名查询等应用场景时不免显得吃力,经常要手写SQL语句(或者用工具生成SQL配置文 ...

  3. python中executemany的使用

    conn = MySQLdb.connect(host = “localhost”, user = “root”, passwd = “password”, db = “myDB”, charset= ...

  4. Spring学习十三----------Spring AOP的基本概念

    © 版权声明:本文为博主原创文章,转载请注明出处 什么是AOP -面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术 -主要的功能是:日志记录.性能统计.安全控制.事务处理. ...

  5. HDU 3461 Code Lock(并查集的应用+高速幂)

    * 65536kb,仅仅能开到1.76*10^7大小的数组. 而题目的N取到了10^7.我開始做的时候没注意,用了按秩合并,uset+rank达到了2*10^7所以MLE,所以貌似不能用按秩合并. 事 ...

  6. 有一个直方图,用一个整数数组表示,其中每列的宽度为1,求所给直方图包含的最大矩形面积。比如,对于直方图[2,7,9,4],它所包含的最大矩形的面积为14(即[7,9]包涵的7x2的矩形)。给定一个直方图A及它的总宽度n,请返回最大矩形面积。保证直方图宽度小于等于500。保证结果在int范围内。

    // ConsoleApplication5.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<vector> ...

  7. golang 格式化时间成datetime

    Golang或者Beego,总需要往数据库里写datetime时间戳. Golang对时间格式支持并不理想. 先看一个例子: package main import ( "fmt" ...

  8. 继承ViewGroup类

    Android中,布局都是直接或间接的继承自ViewGroup类,其中,ViewGroup的直接子类目前有: AbsoluteLayout, AdapterView<T extends Adap ...

  9. 【CISCO强烈推荐】生成树 《路由协议》 卷一二 拥塞:网络延迟 阻塞:进程中 MTU QS:服务质量 OSPF RIP ISIS BGP 生成树 《路由协议》 卷一二

    协议 CP/IP路由技术第一卷 作    者 (美)多伊尔,(美)卡罗尔

  10. The Log-Structured Merge-Tree (LSM-Tree

    https://www.cs.umb.edu/~poneil/lsmtree.pdf [Log-Structured Merge-Tree ][结构化日志归并树][要解决的问题]The   Log-S ...