EM算法推导

网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘。

在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可。但是包含隐变量,直接求导就变得异常复杂,此时需要EM算法,首先求出隐变量的期望值(E步),然后,把隐变量当中常数,按照不包含隐变量的求解最大似然的方法解出参数(M步),反复迭代,最终收敛到局部最优。下面给出EM算法的推导

我们有对数似然函数
\[
L(\theta)=\log P(y|\theta) = \log\sum_zp(y,z|\theta)
\]
可以表示成包含隐变量\(z\)的形式,然后通过边缘化再消除\(z\),效果是一样的。

由于是迭代,我们需要每次得到的新的似然结果比上一次的似然结果要大,于是我们的目标是下式
\[
\theta = \arg\max_\theta L(\theta) - L(\theta')
\]
由于$L(\theta') $ 是常量,所以,使得\(L(\theta)\)最大化即可。下面看看如何最大化 \(L(\theta)\) :
\[
\begin{split}
\theta &= \arg\max_\theta L(\theta)\\
&= \arg\max_\theta \log\sum_zp(y,z|\theta)\\
&= \arg\max_\theta \log\sum_zp(z|y, \theta')\dfrac{p(y, z|\theta)}{p(z|y, \theta')}\\
&= \arg\max_\theta \sum_zp(z|y,\theta')\log\dfrac{p(y,z|
\theta)}{p(z|y,\theta')}\\
&= \arg\max_\theta\sum_zp(z|y,\theta')\log(p(y, z|\theta))\\
&= \arg\max_\theta Q(\theta, \theta')
\end{split}
\]

至此,得到传说中的Q函数,然后求解出参数\(\theta\)即可

EM算法简易推导的更多相关文章

  1. 【机器学习】EM算法详细推导和讲解

    今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...

  2. EM算法以及推导

    EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y) ...

  3. EM算法-完整推导

    前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来 ...

  4. Machine Learning系列--EM算法理解与推导

    EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...

  5. EM算法理论与推导

    EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这 ...

  6. EM算法(Expectation Maximization Algorithm)初探

    1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...

  7. EM算法

    EM算法的推导

  8. 猪猪的机器学习笔记(十四)EM算法

    EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...

  9. EM算法原理总结

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对 ...

随机推荐

  1. javaSe-String/StringBuffer

    //String字符串.在进行字符串拼接的时候总是改变栈中指向堆中的位置 //StringBuffer字符串.在进行字符串拼接的时候不改变栈中指向堆中的位置 package com.java.chap ...

  2. javase基础-Helloword

    public class HelloWorld {//创建一个类 :1.类名首字母需要大写:2.类名必须和文件名一致         public static void main(String[]  ...

  3. GPnP profile内容

    <?xml version="1.0" encoding="UTF-8"?>  <gpnp:GPnP-Profile Version=&quo ...

  4. 解决nginx bind() to 0.0.0.0:80 failed 问题

    nginx的配置文件一开始默认是80端口,出现这个错误多半是80端口已经被占用.这时候只需要把 server { listen 8088; server_name localhost lcsf.com ...

  5. Tarjan的学习笔记 求割边求割点

    博主图论比较弱,搜了模版也不会用... 所以决心学习下tarjan算法. 割点和割边的概念不在赘述,tarjan能在线性时间复杂度内求出割边. 重要的概念:时间戟,就是一个全局变量clock记录访问结 ...

  6. Uva 127 poj 1214 `Accordian'' Patience 纸牌游戏 模拟

    Input Input data to the program specifies the order in which cards are dealt from the pack. The inpu ...

  7. Django 的母板及布局(Bootstrap)

    title: Django 的母板及布局(Bootstrap) tags: Django --- Django 的母板及布局(Bootstrap) Django 的母板是作为公共的部分,其他的页面都能 ...

  8. 《毛毛虫团队》第八次团队作业:ALPHA冲刺

    一:实验名称:软件测试与ALPHA冲刺 二:实验目的与要求 (1)掌握软件测试基础技术. (2)学习迭代式增量软件开发过程(Scrum). 三:实验步骤 任务一:各个成员今日完成的任务: 任务二:明日 ...

  9. thinkphp 为什么访问路径错误,还可以访问

    在学习中访问入口文件,实际上应该访问public\index\index\   但其实也可以访问application.admin.controller\index,同样可以在网页下显示 原理:pub ...

  10. Web前端 优化方案

    1.减少Http请求  在一个页面中图片,CSS,JS可能N个,如果每个资源都去请求一次服务器的话,那么服务器就会为每个资源开一个线程来完成,这样的话对服务器的压力就很大了.所以解决的方法就是合并资源 ...