EM算法简易推导
EM算法推导
网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘。
在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可。但是包含隐变量,直接求导就变得异常复杂,此时需要EM算法,首先求出隐变量的期望值(E步),然后,把隐变量当中常数,按照不包含隐变量的求解最大似然的方法解出参数(M步),反复迭代,最终收敛到局部最优。下面给出EM算法的推导
我们有对数似然函数
\[
L(\theta)=\log P(y|\theta) = \log\sum_zp(y,z|\theta)
\]
可以表示成包含隐变量\(z\)的形式,然后通过边缘化再消除\(z\),效果是一样的。
由于是迭代,我们需要每次得到的新的似然结果比上一次的似然结果要大,于是我们的目标是下式
\[
\theta = \arg\max_\theta L(\theta) - L(\theta')
\]
由于$L(\theta') $ 是常量,所以,使得\(L(\theta)\)最大化即可。下面看看如何最大化 \(L(\theta)\) :
\[
\begin{split}
\theta &= \arg\max_\theta L(\theta)\\
&= \arg\max_\theta \log\sum_zp(y,z|\theta)\\
&= \arg\max_\theta \log\sum_zp(z|y, \theta')\dfrac{p(y, z|\theta)}{p(z|y, \theta')}\\
&= \arg\max_\theta \sum_zp(z|y,\theta')\log\dfrac{p(y,z|
\theta)}{p(z|y,\theta')}\\
&= \arg\max_\theta\sum_zp(z|y,\theta')\log(p(y, z|\theta))\\
&= \arg\max_\theta Q(\theta, \theta')
\end{split}
\]
至此,得到传说中的Q函数,然后求解出参数\(\theta\)即可
EM算法简易推导的更多相关文章
- 【机器学习】EM算法详细推导和讲解
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...
- EM算法以及推导
EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y) ...
- EM算法-完整推导
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来 ...
- Machine Learning系列--EM算法理解与推导
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...
- EM算法理论与推导
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这 ...
- EM算法(Expectation Maximization Algorithm)初探
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...
- EM算法
EM算法的推导
- 猪猪的机器学习笔记(十四)EM算法
EM算法 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...
- EM算法原理总结
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对 ...
随机推荐
- 帝国empirecms去除后台登陆认证码
打开文件:\e\config\config.php 找到代码 $ecms_config['esafe']['loginauth']='abc'; 把值设为空即可,即改为 $ecms_config['e ...
- ios 身份证照片识别信息
一个近乎完整的可识别中国身份证信息的Demo就问问你霸气不
- 运行JavaWeb项目报错Access denied for user 'root'@'localhost' (using password: YES)
问题重现:(以下讨论范围仅限Windows环境): C:\AppServ\MySQL> mysql -u root -p Enter password: ERROR 1045 (28000): ...
- hiho一下 第四十五周 博弈游戏·Nim游戏·二(转成NIm)
Alice和Bob这一次准备玩一个关于硬币的游戏:N枚硬币排成一列,有的正面朝上,有的背面朝上,从左到右依次编号为1..N.现在两人轮流翻硬币,每次只能将一枚正面朝上的硬币翻过来,并且可以随自己的意愿 ...
- 如何选择Web开发框架
下面先来看看为什么要使用Web开发框架一 使用框架的必然性框架,即framework.其实就是某种应用的半成品,把不同应用程序中有共性的一些东西抽取出来,做成一个半成品程序,这样的半成品就是所谓的程序 ...
- 使用nginx搭建一个简单的负载均衡
在windows系统上使用IIS模拟出两个不同服务器的站点: 然后再NGINX使用轮询机制配置两个服务器以及虚拟服务器的端口: 需要注意的是,配置虚拟代理域名的话需要找到windowsC盘下的host ...
- 2018.3.3 多线程中继承Thread 和实现Runnable接口 的比较(通过售票案例来分析)
多线程中继承Thread 和实现Runnable接口 的比较(通过售票案例来分析) 通过Thread来实现 Test.java package com.lanqiao.demo4; public cl ...
- python 产生随机数
Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...
- NIOP 膜你题
NOIp膜你题 Day1 duliu 出题人:ZAY 1.大美江湖(mzq.cpp/c) [题目背景] 细雪飘落长街,枫叶红透又一年不只为故友流连,其实我也恋长安听门外足音慢,依稀见旧时容颜 ...
- MySQL 5.7.20绿色版安装详细图文教程
MySQL 5.7.20绿色版安装详细图文教程 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,目前属于Oracle旗下产品.这篇文章主要介绍了MySQL 5.7.20绿色版安装 ...