这里对于题意在说明一下, 题目中要求的排列必须是波浪形,每一个在排列中的人不是波峰就是波谷,如果它既不是波峰也不是波谷排列就是错的.

对于我这种数学渣渣来说,做一道dp题要好久,%>_<%   怎么想到的DP呢? 首先他看起来像搜素,但数据范围很大(对于深搜来说20就够大了),抱着试一试的心态用暴搜写了一下,结果在n=12是爆掉了,怎么优化慢了一倍的时间呢? 由于我剪枝能力一点都不高,然后我觉得搜素爆掉就要想dp,然后越想越觉得很对.

解题思路,假设n个人身高从1到n升序排列,我们先把题目分解成一个最小子问题,就是第n个人要插在哪里? 他前面有n-1人, 那么就有n个孔等着他插,假设他插到了第j个位置,前面有j-1人,后面有n-j人. 那么第一个式子就出来了,当第n个人在j位置时,对于这种情况的排列总数为前面j-1人的总排列数*后面n-j人的总排列数,这是不是就是很明显的dp了,求一个解必须已知其他的解,但现在其他的解没有规律无法求出,那么就找出规律来. 咱们在想,第n个人是不是一定最高,他插在j位置,他前面的那个人一定比他矮,那么第n个人前面的那个序列最后两人一定是降序排列的,我们设这种状态为0,那后面的那个序列的前面两人也一定是升序排列的,我们设为1,那么此时有dp[j][0]代表j个人最后两人是升序排列的总排列数,dp[n-j][1]代表n-j个人最前面两人是升序排列的.但是还没完,还有很重要的一点没有考虑到, 第n个人前面的j-1个人是不是不知道选谁,因为第n个人在最初排列中他前面有n-1个人这n-1中选哪几个站在第n个人前面呢? 不要考虑身高(因为对于波浪线来说总会有合适的)  这样是不是c(n-1,j-1)一下,前面的人确定了,后面的人也就随之确定了,所以就不用考虑了.

这样推到之后,有递推公式 c(n-1,j-1)*dp[j-1][0]*dp[n-j][1]  由于对称性 sum[n](n的总排列数)/2=dp[n][0]=dp[n][1],想一想对不对?

那么最终n的总排列数就等于把所有孔算完相加的值,代码如下.

#include<cstdio>
#include<cstring> using namespace std; __int64 dp[][];
__int64 answer[]; __int64 C(int x,int y) // xÊǵ×Êý
{
__int64 mother=,son=;
for(int i=;i<y;i++)
{
mother*=(y-i);
son*=(x-i);
}
return son/mother;
}
int main()
{
for(int i=;i<=;i++){
for(int j=;j<;j++)
dp[i][j]=;
}
answer[]=;
for(int i=;i<=;i++){
for(int j=;j<=i;j++){
answer[i]+=C(i-,j-)*dp[j-][]*dp[i-j][]; }
dp[i][]=dp[i][]=answer[i]/;
}
int t;
scanf("%d",&t);
while(t--)
{
int k,n;
scanf("%d%d",&k,&n);
printf("%d ",k);
printf("%I64d\n",answer[n]);
}
return ;
}

hdu4489 组合公式+dp的更多相关文章

  1. HDOJ(HDU) 2519 新生晚会(组合公式)

    Problem Description 开学了,杭电又迎来了好多新生.ACMer想为新生准备一个节目.来报名要表演节目的人很多,多达N个,但是只需要从这N个人中选M个就够了,一共有多少种选择方法? I ...

  2. bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 803  Solved: 372[Submit][Statu ...

  3. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  4. hdu 1799 (循环多少次?)(排列组合公式)

    循环多少次? Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  5. Luogu4622 COCI2012-2013#6 JEDAN 组合、DP

    传送门 题意:给出一个$N$个数的序列$a_i$,其中$a_i=-1$表示第$i$个位置数字未知,问有多少种用非负整数代替$a_i$中$-1$的方法使得从全$0$序列经过以下操作若干次得到序列$a_i ...

  6. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  7. poj2279排队——杨氏矩阵与钩子公式(DP爆内存)

    题目:http://poj.org/problem?id=2279 书上的DP做法会爆内存,尝试写了一个,过了样例. 转载: 代码如下: #include<iostream> #inclu ...

  8. HDU - 5492 Find a path(方差公式+dp)

    Find a path Frog fell into a maze. This maze is a rectangle containing NN rows and MM columns. Each ...

  9. Codeforces 140E(排列组合、dp)

    要点 主要学到的东西:一个序列染色,相邻不染同色,恰用\(j\)种颜色的1.模式数.2.方案数.3.具体染色数. 从大的思路上来讲:先dp预处理出每一层的模式数:\(f[i][j]\)表示\(i\)个 ...

随机推荐

  1. ASPX1

    表单提交 <!--表单:收集用户的数据.---> <form method="post" action="AddInfo.ashx"> ...

  2. JS将人民币小写金额转换为大写

    /** 数字金额大写转换(可以处理整数,小数,负数) */ function smalltoBIG(n) { var fraction = ['角', '分']; var digit = ['零', ...

  3. css3的过渡、动画、2D、3D效果

    浏览器的内核: 谷歌的内核是:webkit 火狐的内核是:gecko Ie的内核是:trident 欧鹏的内核是:presto 国内浏览器的内核:webkit css3针对同一样式在不同的浏览器的兼容 ...

  4. div嵌套时,子元素设置margin-top失效问题

    这是因为父元素的padding设置为0时所产生的bug,它自动将margin-top提升到了父元素上,所以此时我们所设置的margin-top自动就到父元素上了,解决方案: 1.给父元素添加一个pad ...

  5. BUG数量和项目成本

    这篇文章,不是讨论怎么提升程序员的能力避免BUG,因为程序员的能力不足造成的BUG,短期是无法避免的.这里主要探讨的是因为程序员疏忽大意和不良的开发习惯,产生的低级BUG,对项目成本影响. 首先了解下 ...

  6. Python3+Selenium3+webdriver学习笔记5(模拟常用键盘和鼠标事件)

    #!/usr/bin/env python# -*- coding:utf-8 -*- from selenium import webdriverfrom selenium.webdriver.co ...

  7. PostgreSQL: epoch 新纪元时间的使用

    新纪元时间 Epoch 是以 1970-01-01 00:00:00 UTC 为标准的时间,将目标时间与 1970-01-01 00:00:00时间的差值以秒来计算 ,单位是秒,可以是负值; 有些应用 ...

  8. LeetCode Pascal's Triangle Pascal三角形

    题意:给一个数字,返回一个二维数组,包含一个三角形. 思路:n=0.1.2都是特例,特别处理.3行以上的的头尾都是1,其他都是依靠上一行的两个数.具体了解Pascal三角形原理. class Solu ...

  9. LibreOJ #2130. 「NOI2015」软件包管理器

    内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 上传者: 匿名 树链剖分+线段树 屠龙宝刀点击就送 #include <vector> ...

  10. 【TensorFlow入门完全指南】模型篇·最近邻模型

    最近邻模型,更为常见的是k-最近邻模型,是一种常见的机器学习模型,原理如下: KNN算法的前提是存在一个样本的数据集,每一个样本都有自己的标签,表明自己的类型.现在有一个新的未知的数据,需要判断它的类 ...