题目:http://acm.hdu.edu.cn/showproblem.php?pid=3037

卢卡斯定理模板——大组合数的取模

代码如下:

#include<iostream>
#include<cstdio>
using namespace std;
long long t,n,m,p,a[100005];
long long qpow(long long x,long long y)
{
if(y==0)return 1;
long long ans=1;
while(y>0)
{
if(y%2)ans=ans*x%p;//不能是ans*=x%p;
y/=2;
x=x*x%p;
}
return ans;
}
long long getc(long long n,long long m)
{
if(n<m)return 0;
if(m>n-m)m=n-m;
long long s1=1,s2=1;
for(int i=1;i<=m;i++)
{
s2=s2*i%p;
s1=s1*(n-i+1)%p;
}
return s1*qpow(s2,p-2)%p;
// return (a[n]*qpow(a[m],p-2))%p*qpow(a[n-m],p-2)%p;
}
long long lucas(long long n,long long m)
{
if(m==0)return 1;
return getc(n%p,m%p)*lucas(n/p,m/p)%p;
}
int main()
{
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld%lld",&n,&m,&p);
// a[0]=1;
// for(int i=1;i<=p;i++)
// a[i]=a[i-1]*i%p;
printf("%lld\n",lucas(n+m,n)%p);
}
return 0;
}

  

hdu3037Saving Beans——卢卡斯定理的更多相关文章

  1. hdu 3037Saving Beans(卢卡斯定理)

    Saving Beans Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  2. 【BZOJ4403】序列统计(组合数学,卢卡斯定理)

    [BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...

  3. 【Luogu3807】【模板】卢卡斯定理(数论)

    题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...

  4. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  5. 【XSY2691】中关村 卢卡斯定理 数位DP

    题目描述 在一个\(k\)维空间中,每个整点被黑白染色.对于一个坐标为\((x_1,x_2,\ldots,x_k)\)的点,他的颜色我们通过如下方式计算: 如果存在一维坐标是\(0\),则颜色是黑色. ...

  6. 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP

    题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...

  7. 卢卡斯定理&扩展卢卡斯定理

    卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cd ...

  8. [Sdoi2010]古代猪文 (卢卡斯定理,欧拉函数)

    哇,这道题真的好好,让我这个菜鸡充分体会到卢卡斯和欧拉函数的强大! 先把题意抽象出来!就是计算这个东西. p=999911659是素数,p-1=2*3*4679*35617 所以:这样只要求出然后再快 ...

  9. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

随机推荐

  1. 一起学Django之Day01

    创建项目 SimilarFacedeMacBook-Pro:PycharmProjects similarface$ django-admin startproject StudyDjango 创建A ...

  2. android利用apkplug框架实现主应用与插件通讯(传递随意对象)实现UI替换

    时光匆匆,乍一看已半年过去了,经过这半年的埋头苦干今天最终有满血复活了. 利用apkplug框架实现动态替换宿主Activity中的UI元素.以达到不用更新应用就能够更换UI样式的目的. 先看效果图: ...

  3. PowerBuilder -- 其他

    判断某键是否被按下 KeyDown ( keycode ) 继承问题 如果是 uf_1是函数呢   你在父类UO_1的uf_1里面 写了代码,只要在子类UO_2的uf_1写了代码,默认是覆盖(over ...

  4. Android 关于软键盘

    一..弹出的时候显示Editext框 添加布局replay_input <?xml version="1.0" encoding="utf-8"?> ...

  5. 【BZOJ4281】[ONTAK2015]Związek Harcerstwa Bajtockiego LCA

    [BZOJ4281][ONTAK2015]Związek Harcerstwa Bajtockiego Description 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点.之后 ...

  6. 【BZOJ4399】魔法少女LJJ 线段树合并

    [BZOJ4399]魔法少女LJJ Description 在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了LJJ感叹道“这里真是个迷人的 ...

  7. 九度OJ 1167:数组排序 (排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5395 解决:1715 题目描述: 输入一个数组的值,求出各个值从小到大排序后的次序. 输入: 输入有多组数据. 每组输入的第一个数为数组的 ...

  8. 在RedHat Linux系统中安装和配置snmp服务

    检查系统是否安装snmp服务 # rpm -qa|grep snmp net-snmp-5.3.2.2-17.el5 net-snmp-perl-5.3.2.2-17.el5 net-snmp-dev ...

  9. Java for LeetCode 113 Path Sum II

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...

  10. 编写你的第一个web应用程序1

    在shell中运行以下命令来检查django是否已安装及其版本 python -m django --version 如果django已经安装,你应该看到安装的版本号,如果还没有安装,你会看到一个‘n ...