#include<bits/stdc++.h>
using namespace std;
#define ll long long int a[];
ll dp[][/*可能需要的状态1*/][/*可能需要的状态2*/];//不同题目状态不同
ll dfs(int pos,int state1/*可能需要的状态1*/,int state2/*可能需要的状态2*/,bool lead/*这一位的前面是否为零*/,bool limit/*这一位是否取值被限制(也就是上一位没有解除限制)*/)
//不是每个题都要处理前导零
{
//递归边界,最低位是0,那么pos==-1说明这个数枚举完了
if(pos==-)
return ;/*这里返回1,表示枚举的这个数是合法的,那么这里就需要在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。 */
//第二个就是记忆化(在此前可能不同题目还能有一些剪枝)
if(!limit && !lead && dp[pos][state1][state2]!=-)
return dp[pos][state1][state2];
/*常规写法都是在没有限制的条件记忆化,这里与下面记录状态对应*/
int up=limit?a[pos]:;//根据limit判断枚举的上界up
ll ans=;
//开始计数
for(int i=;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了
{
int new_state1=???;
int new_state2=???;
/*
计数的时候用continue跳过不合法的状态,不再搜索
*/ //合法的状态向下搜索
ans+=dfs(pos-,new_state1,new_state2,lead && i==,limit && i==a[pos]);//最后两个变量传参都是这样写的
}
//计算完,记录状态
if(!limit && !lead)
dp[pos][state1][state2]=ans;
/*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
return ans;
} ll solve(ll x)
{
//可能需要特殊处理0或者-1
if(x<=)
return ???; int pos=;
while(x)//把数位分解
{
a[pos++]=x%;//编号为[0,pos),注意数位边界
x/=;
} return dfs(pos-/*从最高位开始枚举*/,/*可能需要的状态1*/,/*可能需要的状态2*/,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛
} int main()
{
memset(dp,-,sizeof(dp));
//一定要初始化为-1 ll le,ri;
while(~scanf("%lld%lld",&le,&ri))
{
printf("%lld\n",solve(ri)-solve(le-));
}
}

其实另一种计数写法对别的题目有一定的启发性,需要特别注意的是,无论哪种写法的dp结果中存的数字都是和le与ri无关的。所以在数位受限时不能取用计算过的dp值,也不能更新dp值,不受限的情况可以重复利用。

无注释版:

#include<bits/stdc++.h>
using namespace std;
#define ll long long int a[];
ll dp[][MAXS1][MAXS2];
ll dfs(int pos,int s1,int s2,bool lead,bool limit) {
if(pos==-) {
return ?;
}
if(!limit && !lead && dp[pos][s1][s2]!=-)
return dp[pos][s1][s2];
int up=limit?a[pos]:;
ll ans=;
for(int i=; i<=up; i++) {
int ns1=op1(s1);
int ns2=op2(s2);
ans+=dfs(pos-,ns1,ns2,lead && i==,limit && i==a[pos]);
}
if(!limit && !lead)
dp[pos][s1][s2]=ans;
return ans;
} ll solve(ll x) {
if(x<=)
return ?; int pos=;
while(x) {
a[pos++]=x%;
x/=;
} return dfs(pos-,INITS1,INITS2,true,true);
} int main() {
memset(dp,-,sizeof(dp)); ll le,ri;
while(~scanf("%lld%lld",&le,&ri)) {
printf("%lld\n",solve(ri)-solve(le-));
}
}

一个更简单的模板,去掉了很多奇奇怪怪的东西,比如前导0,前导0的确应该特殊考虑而不能一概而论。

int dfs(int i, int s, bool e) {
if (i==-) return s==target_s;
if (!e && ~f[i][s]) return f[i][s];
int res = ;
int u = e?num[i]:;
for (int d = first?:; d <= u; ++d)
res += dfs(i-, new_s(s, d), e&&d==u);
return e?res:f[i][s]=res;
}

看起来清爽多了,其中:

f为记忆化数组;

i为当前处理串的第i位(权重表示法,也即后面剩下i+1位待填数);

s为之前数字的状态(如果要求后面的数满足什么状态,也可以再记一个目标状态t之类,for的时候枚举下t);

e表示之前的数是否是上界的前缀(即后面的数能否任意填)。

for循环枚举数字时,要注意是否能枚举0,以及0对于状态的影响,有的题目前导0和中间的0是等价的,但有的不是,对于后者可以在dfs时再加一个状态变量z,表示前面是否全部是前导0,也可以看是否是首位,然后外面统计时候枚举一下位数。

注意:

不满足区间减法性质的话,不能用solve(r)-solve(l-1)。


看了学长的部分博客之后发现其实使用f[i][j][st]表示以j开头的i位数满足条件st的数的个数也是可以的。待更新。

模板 - 动态规划 - 数位dp的更多相关文章

  1. 动态规划——数位dp

    通过先前在<动态规划——背包问题>中关于动态规划的初探,我们其实可以看到,动态规划其实不是像凸包.扩展欧几里得等是具体的算法,而是一种在解决问题中决策的思想.在不同的题目中,我们都需要根据 ...

  2. 模板:数位DP

    第一次听说dp还有模板的... 当然你要是记忆化搜索的话,就可以有一些套路 这是一个伪代码: LL Dfs(LL now,限制,LL top){ if(!now) return 判断条件; if(!t ...

  3. 动态规划-数位dp

    大佬讲的清楚 [https://blog.csdn.net/wust_zzwh/article/details/52100392] 例子 不要62或4 l到r有多少个数不含62或者4 代码 #incl ...

  4. 模板 - 动态规划 - 区间dp

    因为昨天在Codeforces上设计的区间dp错了(错过了上紫的机会),觉得很难受.看看学长好像也有学,就不用看别的神犇的了. 区间dp处理环的时候可以把序列延长一倍. 下面是 $O(n^3)$ 的朴 ...

  5. [转]数位dp小记

    转载自:http://blog.csdn.net/guognib/article/details/25472879 参考: http://www.cnblogs.com/jffifa/archive/ ...

  6. HDU 5179 beautiful number 数位dp

    题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=5179 bc(中文): http://bestcoder.hdu.edu.cn/contes ...

  7. Pair(二进制处理+数位dp)(2019牛客暑期多校训练营(第七场))

    示例: 输入: 33 4 24 5 27 8 5 输出:5 7 31 题意:存在多少对<x,y>满足x&y>C或x^y<C的条件.(0<x<=A,0< ...

  8. 数位dp模板 [dp][数位dp]

    现在才想到要学数位dp,我是不是很弱 答案是肯定的 以一道自己瞎掰的题为模板 //题: //输入数字n //从0枚举到n,计算这n+1个数中含有两位数a的数的个数 //如12930含有两位数93 #i ...

  9. [模板] 数位dp

    数位dp 简介 数位dp指满足特定性质的数的计数, 如求 \([l, r]\) 区间内不含 \(2\) 的数的个数. 一般来说, 数位dp利用dfs解决, 有时状态数较多, 需要hash表优化. 模板 ...

随机推荐

  1. Ubuntu下如何配置使终端透明

    今天学习了一招如何将Ubuntu下的终端背景颜色变得透明,感觉透明之后有好处,比如网上有些命令,可以直接覆盖原来的网页察看,然后敲击命令. 下面就来看看终端背景变透明前后的对比效果. 完全不透明,最大 ...

  2. 十分钟git-服务器搭建ssh登陆

    QQ820688215 微信公众号: 1首先,创建一个操作系统用户 git,并为其建立一个 .ssh 目录. $ sudo adduser git $ su git $ cd $ mkdir .ssh ...

  3. PermissionError: [Errno 13] Permission denied:

    在ubuntu系统下使用pip 命令安装包时,出现以下类似错误提示: PermissionError: [Errno 13] Permission denied: '/usr/local/lib/py ...

  4. 剑指Offer:矩形覆盖【N1】

    剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...

  5. 第13届景驰-埃森哲杯广东工业大学ACM程序设计大赛 G 旋转矩阵 【模拟】

    链接:https://www.nowcoder.com/acm/contest/90/G 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...

  6. matplotlib和numpy 学习笔记

    1. 在二维坐标系中画一个曲线 import matplotlib.pyplot as plt #data len=400, store int value data = [] #set x,y轴坐标 ...

  7. Ubuntu编译Android使用的FFmpeg

    本文介绍在Ubuntu平台编译FFmpeg库,用于Android使用.前提需要配置好NDK的环境.可以参考之前的文章Android NDK环境搭建. 下载FFmpeg 在官网下载FFmpeg源码,ht ...

  8. 《CSS权威指南(第三版)》---第二章 选择器

    本章的主要内容是,怎么获取文档中的元素给予渲染: 1.元素选择器: 2.ID选择器: 3.CLSSS选择器: 4.通配选择器:*; 5.属性选择器:selector[] 6.部分属性选择器: sele ...

  9. SETEVENT的使用

    来源:https://msdn.microsoft.com/en-us/library/windows/desktop/ms686915(v=vs.85).aspx 昨天看到这个SetEvent的方法 ...

  10. hdu 2015校赛1002 Dual horsetail (思维题 )

    Dual horsetail Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...