题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入输出格式

输入格式:

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式:

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入样例#1:

4
4 5 9 4

输出样例#1:

43
54
 #include<bits/stdc++.h>
using namespace std;
const int MAXN=;
const int INF=0x3f3f3f3f;
int dp[MAXN][MAXN],sum[MAXN],ans[MAXN],DP[MAXN][MAXN];
int jian(int i,int j){ return sum[j]-sum[i-]; }//i-1是因为前缀和要减去前一个而不是当前的那个。
int main()
{
int n;
scanf("%d",&n);
for (int i = ; i <=n ; ++i) {
scanf("%d",&ans[i]);
}
for (int i = ; i <=n+n ; ++i) {//拆开环,双向
ans[i+n]=ans[i];
sum[i]=ans[i]+sum[i-];//前缀和
}
memset(dp,, sizeof(dp));
for (int l = ; l <n ; ++l) {// 步长 ,l==1时,步长为二
for (int i = ,j=i+l; (j<n+n)&&(i<n+n) ; ++i,j=i+l) {
DP[i][j]=INF;
for (int k = i; k <j ; ++k) {//每一步当中的分割点
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+][j]+jian(i,j));//l-r的最大值
DP[i][j]=min(DP[i][j],DP[i][k]+DP[k+][j]+jian(i,j));
}
}
}
int MAX=,MIN=INF;
for(int i=;i<=n;i++)
{
MAX=max(MAX,dp[i][i+n-]);
MIN=min(MIN,DP[i][i+n-]);
}
printf("%d\n%d\n",MIN,MAX);
return ;
}

P1880 [NOI1995]石子合并【区间DP】的更多相关文章

  1. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  2. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  3. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  4. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  5. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

  6. P1880 [NOI1995]石子合并[环形DP]

    题目来源:洛谷 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将 ...

  7. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  8. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  9. 区间DP初探 P1880 [NOI1995]石子合并

    https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...

  10. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

随机推荐

  1. ORA-02298: 无法验证 (约束) - 未找到父项关键字 解决办法

    --在用PL/SQL导入表数据的时候报错 ORA-02298: 无法验证 (PNET.POST_CLOB_FK) - 未找到父项关键字 --发现是启用外键约束时报的错alter table DM_VO ...

  2. css3的transform变换scale和translate等影响jQuery的position().top和offset().top

    css3的transform变换scale和translate等影响jQuery的position().top和offset().top

  3. git学习(一)

    提:       远程的主机名(远程仓库服务器名):  origin   本地的主分支: master(本地master分支)      远程的主分支: maste(远程仓库的master分支) gi ...

  4. yii:高级应用程序搭建数据库的详细流程

    上一章已经把高级应用程序的环境搭配成功,那么下一步就是搭建数据库了. 首先,我们先去创建一个数据库,比如:demo 创建完之后,我们重要的就是将文件中的数据进行一个更新,在www/advancend/ ...

  5. HDU3577 线段树(区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3577 ,普通的线段树区间更新题目,较简单. 相当于一个区间覆盖问题,有一点要注意的就是叶子节点是一个长 ...

  6. World Wind Java开发之十——AnalyticSurface栅格渲染(转)

    http://blog.csdn.net/giser_whu/article/details/43017881 1.AnalyticSurfaceDemo ArcGIS下对栅格的各种分级渲染效果是非常 ...

  7. hdu-1068&&POJ1466 Girls and Boys---最大独立集

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1068 题目大意: 有n个人,一些人认识另外一些人,选取一个集合,使得集合里的每个人都互相不认识,求该 ...

  8. 2018.6.15 Java对象序列化详解

    一.定义 Serializable 序列化:把Java对象转换为字节序列的过程. 反序列化:把字节序列恢复为Java对象的过程. ObjectOutputStream对象输出流 可以将实现了Seria ...

  9. python实现剑指offer对称的二叉树

    题目描述 请实现一个函数,用来判断一颗二叉树是不是对称的.注意,如果一个二叉树同此二叉树的镜像是同样的,定义其为对称的. # -*- coding:utf-8 -*- # class TreeNode ...

  10. TensorFlow 内置重要函数解析

    概要 本部分介绍一些在 TensorFlow 中内置的重要函数,了解这些函数有时候更加方便我们进行数据的处理或者构建神经网络. 这些函数如下:       tf.one_hot()     tf.ra ...