luogu1829 [国家集训队]Crash的数字表格
被 bs 了姿势水平……好好学习数学QAQQAQQAQ
ref
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, m, pri[10000005], cnt, mu[10000005], qia[10000005];
bool isp[10000005];
const int mod=20101009;
void shai(){
memset(isp, true, sizeof(isp));
isp[0] = isp[1] = false;
mu[1] = 1;
for(int i=2; i<=10000000; i++){
if(isp[i]) pri[++cnt] = i, mu[i] = -1;
for(int j=1; j<=cnt && i*pri[j]<=10000000; j++){
isp[i*pri[j]] = false;
if(i%pri[j]==0){
mu[i*pri[j]] = 0;
break;
}
mu[i*pri[j]] = mu[i] * -1;
}
}
for(int i=1; i<=10000000; i++)
qia[i] = ((ll)i*i*mu[i]%mod+mod)%mod;
for(int i=2; i<=10000000; i++)
qia[i] = (qia[i-1] + qia[i]) % mod;
}
int solve1(int x, int y){
int i=1, re=0;
while(i<=min(x, y)){
int j=min(x/(x/i), y/(y/i));
int tmp=(qia[j]-qia[i-1]+mod)%mod;
tmp = (ll)tmp * ((ll)(1+x/i)*(x/i)/2 % mod) % mod;
tmp = (ll)tmp * ((ll)(1+y/i)*(y/i)/2 % mod) % mod;
re = (re + tmp) % mod;
i = j + 1;
}
return re;
}
int main(){
cin>>n>>m;
shai();
int i=1, ans=0;
while(i<=min(n, m)){
int j=min(n/(n/i), m/(m/i));
int tmp=((ll)(i+j)*(j-i+1)/2)%mod;
tmp = (ll)tmp * solve1(n/i, m/i) % mod;
ans = (ans + tmp) % mod;
i = j + 1;
}
cout<<ans<<endl;
return 0;
}
luogu1829 [国家集训队]Crash的数字表格的更多相关文章
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...
- P1829 [国家集训队]Crash的数字表格
P1829 [国家集训队]Crash的数字表格 原题传送门 前置芝士 莫比乌斯反演 乘法逆元 数论分块 正文 //补充:以下式子中的除法均为整除 由题目可以得知,这道题让我们所求的数,用一个式子来表达 ...
- [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】
传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...
- 洛谷P1829 [国家集训队]Crash的数字表格
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 【题解】[国家集训队]Crash的数字表格 / JZPTAB
求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...
- [国家集训队]Crash的数字表格
Description: 求$ \sum_{i=1}^n \sum_{j=1}^m lcm(i,j) $ Hint: $ n,m<=10^7 $ Solution: 这题有每次询问 \(O(n) ...
随机推荐
- Python开发环境Wing IDE如何使用调试功能
在使用Wing IDE开始调试的时候,需要设置断点的行,读取GetItemCount函数的返回.这可以通过单击行并选择Break工具栏条目,或通过单击行左边的黑色边缘.断点应该以实心红圈的形式出现: ...
- RxJava2 中多种取消订阅 dispose 的方法梳理( 源码分析 )
Github 相关代码: Github地址 一直感觉 RxJava2 的取消订阅有点混乱, 这样也能取消, 那样也能取消, 没能系统起来的感觉就像掉进了盘丝洞, 迷乱… 下面说说这几种情况 几种取消的 ...
- Eucalyptus(v4.0)系统需求
1.计算需求 Physical Machines: All Eucalyptus components must be installed on physical machines, not virt ...
- C#问题记录-CallbackOnCollectedDelegate
做项目的时候遇到了这个问题: 检测到:CallbackOnCollectedDelegate 对“xx.HookProc::Invoke”类型的已垃圾回收委托进行了回调.这可能会导致应用程序崩溃.损坏 ...
- RStudio Server-0.99.902 (OpenLogic CentOS 7.2)
RStudio Server-0.99.902 (OpenLogic CentOS 7.2) 0 评论 平台: CentOS 类型: 虚拟机镜像 软件包: r-3.2.3 rstudio-server ...
- HDU3308 线段树区间合并
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3308 ,简单的线段树区间合并. 线段树的区间合并:一般是要求求最长连续区间,在PushUp()函数中实 ...
- pat甲级1139
1139 First Contact(30 分) Unlike in nowadays, the way that boys and girls expressing their feelings o ...
- VMware安装win7系统
1.创建一个虚拟机 2.配置iso映射文件 3.设置boot设置第一启动为cd 4.快速分区后重启电脑,然后选择[A]安装win7. 重启电脑后安装win7系统 搞定...
- 国外常用代理IP对比【仅供参考】
国外常用代理IP对比[仅供参考]http://www.it588.cn/vmware/2019-03-22/547.html
- 删除临时文件的bat文件
@echo offecho 正在清除系统垃圾文件,请稍等......del /f /s /q %systemdrive%\*.tmpdel /f /s /q %systemdrive%\*._mpde ...