刷题总结——Cut the Sequence(POJ 3017 dp+单调队列+set)
题目:
Description
Given an integer sequence { an } of length N, you are to cut the sequence into several parts every one of which is a consecutive subsequence of the original sequence. Every part must satisfy that the sum of the integers in the part is not greater than a given integer M. You are to find a cutting that minimizes the sum of the maximum integer of each part.
Input
The first line of input contains two integer N (0 < N ≤ 100 000), M. The following line contains N integers describes the integer sequence. Every integer in the sequence is between 0 and 1 000 000 inclusively.
Output
Output one integer which is the minimum sum of the maximum integer of each part. If no such cuttings exist, output −1.
Sample Input
8 17
2 2 2 8 1 8 2 1
Sample Output
12
Hint
Use 64-bit integer type to hold M.
题解:
哇塞···这道题太bt了·····
引用sdj222555题解:%%%%%%%
令f[i] 表示前i个数按照题目要求的最小的和
则必然有f[i] = min(f[j] + max(a[j +1 , a[j + 2].....a[i]))
其中j<= i,j的位置还得满足题目中m 的限制
由于a数组都是大于0的,所以可以发现f必然是非递减的。
设a[j + 1], a[j + 2], ...a[i]中值最大的下标为k
设x为[j + 1,k]的任意一个下标,则a[x],a[x+1],....a[i]的最大值的下标显然也是k了
由f的非递减性,f[j+1] + a[k] <= f[j+2]+a[k].....<= f[k - 1] + a[k]
很显然,我们只要取f[j+1]+a[k]就可以了。
也就是说如果某一段到当前i位置的最大值都一样,取最靠前的即可。
如何维护呢,可以联想到单调队列。
维护一个递减的队列,存的是符合要求的某一段的最大值,但是可以发现,并不是队首元素就是最优,因为队列中的递减性质,队列中的所有元素都有可能导致最优解。
这时可以用到的东西就很多了,堆啊,各种树这样的。实际上,用个set可以有效的减少代码量。
那么为什么不用递增的队列呢? 如果用递增,比如队列中存的是a[1] a[2] a[3] (a[1] < a[2] < a[3]) ,现在的位置是x,那么a[1], a[2] a[3]到x位置的最大值是相等的。那么a[2]和a[3]就没有存在的意义了。然后就又变成了递减的序列。
最后不得不说比较难想的地方在于a在单调队列中是递减的··这也是关键部分····
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cctype>
#include<set>
using namespace std;
const int N=1e5+;
int num[N],que[N],le,ri,n,low,maxx=;
long long tot,m,f[N];
multiset<int>st;
int main()
{
//freopen("a.in","r",stdin);
scanf("%d%I64d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&num[i]);
if(num[i]>m) {cout<<"-1"<<endl;return ;}
}
low=,le=,ri=;
for(int i=;i<=n;i++)
{
tot+=num[i];
while(tot>m) tot-=num[low++];
while(le<=ri&&num[i]>=num[que[ri]])
{
if(ri>le) st.erase(f[que[ri-]]+num[que[ri]]);ri--;
}
que[++ri]=i;
if(ri>le) st.insert(f[que[ri-]]+num[que[ri]]);
while(que[le]<low)
{
if(le<ri) st.erase(f[que[le]]+num[que[le+]]);le++;
}
int temp=*st.begin();f[i]=f[low-]+num[que[le]];
if(le<ri&&temp<f[i]) f[i]=temp;
}
cout<<f[n]<<endl;
return ;
}
刷题总结——Cut the Sequence(POJ 3017 dp+单调队列+set)的更多相关文章
- POJ 3017 DP + 单调队列 + 堆
题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- POJ - 3162 Walking Race 树形dp 单调队列
POJ - 3162Walking Race 题目大意:有n个训练点,第i天就选择第i个训练点为起点跑到最远距离的点,然后连续的几天里如果最远距离的最大值和最小值的差距不超过m就可以作为观测区间,问这 ...
- POJ 2823【单调队列】
题意: 给出序列,找出每个连续长度为k的子序列的最大值和最小值. 思路: 裸单调队列... 单调队列这东西用的真的非常局限,大概只能用到这种情景中== 简单说一下维护: 添加元素,为了保持单调性,排除 ...
- poj 1821 Fence 单调队列优化dp
/* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...
- POJ 1742 Coins ( 单调队列解法 )
id=1742" target="_blank">题目链接~~> 做题感悟:第一次做的时候用的二进制优化.可是没注意到是险过.so也没去看单调队列的解法. 解 ...
- BZOJ5090 组题 BZOJ2017年11月月赛 二分答案 单调队列
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5090 11月月赛A题 题意概括 给出n个数. 求连续区间(长度大于等于k)最大平均值. 题解 这题 ...
- POJ 3162 Walking Race(树形dp+单调队列 or 线段树)
http://poj.org/problem?id=3162 题意:一棵n个节点的树.有一个屌丝爱跑步,跑n天,第i天从第i个节点开始跑步,每次跑到距第i个节点最远的那个节点(产生了n个距离),现在要 ...
- poj 3162 树DP+单调队列
http://acm.hust.edu.cn/vjudge/problem/11552 http://blog.csdn.net/woshi250hua/article/details/7727677 ...
随机推荐
- 复杂软件的考虑点与UITableView
对象的要素.组织.整体情况: 对象的生成步骤.生成的时间节点. 考虑UITableview.
- DROP OPERATOR - 删除一个操作符
SYNOPSIS DROP OPERATOR name ( lefttype | NONE , righttype | NONE ) [ CASCADE | RESTRICT ] DESCRIPTIO ...
- Bootstrap 提示工具(Tooltip)插件
当您想要描述一个链接的时候,使用提示工具插件是一个不错的选择.Bootstrap提示工具插件做了很多的改进,例如不需要依赖图像,而是改变Css动画效果,用data属性来存储标题信息. 用法 提示工具( ...
- Confirm the Ending--freecodecamp算法题目
Confirm the Ending(检查字符串结尾) 要求 判断一个字符串(str)是否以指定的字符串(target)结尾. 如果是,返回true;如果不是,返回false. 思路 利用.repla ...
- 【转】 VC中TCP实现 异步套接字编程的原理+代码
所谓的异步套接字编程就是 调用了 如下函数 WSAAsyncSelect 设置了 套接字的状态为异步,有关函数我会在下面详细介绍... 异步套接字解决了 套接字编程过程中的堵塞问题 .... ...
- 使用虚拟环境来管理python的包
1.背景 在开发python项目的过程中,我们会用到各种各样的包,我们使用pip来管理包,请看下图我们刚装好python解释器时已安装的包: 但是随着我们疯狂的使用pip install xxx后,系 ...
- k8s的高级调度方式
默认的scheduler的调度过程:1.预选策略:从所有节点当中选择基本符合选择条件的节点.2.优选函数:在众多符合基本条件的节点中使用优选函数,计算节点各自的得分,通过比较进行排序.3.从最高得分的 ...
- JQ之$.ajax()方法以及ajax跨域请求
AJAX(Asynchronous javascript AND xml :异步javascript和xml):是一种创建交互式网页应用的网页开发技术.AJAX可以在不重新加载整个页面的情况下与服务器 ...
- 根据参数优化nginx的服务性能
一.优化nginx服务的worker进程数 在高并发.高访问量的Web服务场景,需要事先启动好更多的nginx进程,以保证快速响应并处理大量并发用户的请求. 1).优化nginx进程对应的配置 优化n ...
- Applied Nonparametric Statistics-lec9
Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/12 前面我们考虑的情况是:response是连续的, ...