功能简介:
  • Java代码层面提供的锁机制,可做为Synchronized(jvm内置)的替代物,和Synchronized一样都是可重入的。
  • 与Synchronized相比较而言,ReentrantLock有以下优 势:支持公平/非公平锁、支持可中断的锁、支持非阻塞的tryLock(可超时)、支持锁条件、可跨代码块使用(一个地方加锁,另一个地方解锁),总之比 Synchronized更加灵活。但也有缺点,比如锁需要显示解锁、无法充分享用JVM内部性能提升带来的好处等等。
源码分析:
  • ReentrantLock实现了Lock接口,先来看下这个接口:
public interface Lock {
/**
* 获取锁,如果锁无法获取,当前线程被阻塞,直到锁可以获取并获取成功为止。
*/
void lock();
/**
* 在当前线程没有被中断的情况下获取锁。
* 如果获取成功,方法结束。
* 如果锁无法获取,当前线程被阻塞,直到下面情况发生:
* 1.当前线程(被唤醒后)成功获取锁。
* 2.当前线程被其他线程中断。
*/
void lockInterruptibly() throws InterruptedException;
/**
* 如果当前锁是可用的,获取锁。
* 获取成功后,返回true。
* 如果当前锁不可用,返回false。
*/
boolean tryLock();
/**
* 如果锁在给定超时时间内可用,并且当前线程没有被中断,那么获取锁。
* 如果锁可用,获取锁成功并返回true。
* 如果锁无法获取,当前线程被阻塞,直到下面情况发生:
* 1.当前线程(被唤醒后)成功获取锁。
* 2.当前线程被其他线程中断。
* 3.指定的等待时间超时。
*/
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
/**
* 释放锁。
*/
void unlock();
/**
* 返回一个和当前锁实例相关联的条件。
* 当前线程必须首先获取锁后才能在锁条件上等待。
* 一个Condition的await()方法调用会在等待之前自动释放锁,在等待结束
* 前重新获取锁。
*/
Condition newCondition();
}
  • 之前分析AQS的时候提到过,基于AQS构建的同步机制都会使用内部帮助类继承AQS的方式构建,看下ReentrantLock中的同步机制:
    //内部同步机制的引用。
private final Sync sync;
/**
* 这个锁实现的基本同步控制机制,下面会提供公平和非公平版本的子类。
* 利用AQS的state来表示锁持有(重入)的次数。.
*/
static abstract class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
/**
* Performs {@link Lock#lock}. The main reason for subclassing
* is to allow fast path for nonfair version.
*/
abstract void lock();
/**
* 方法用来支持非公平的tryLock
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//如果当前没有任何线程获取锁(锁可用),尝试设置state。
if (compareAndSetState(0, acquires)) {
//如果设置成功,将当前线程信息设置到AQS中(所有权关联)。
setExclusiveOwnerThread(current);
return true;
}
}
//如果锁已经被持有,那么判断一下持有锁的线程是否为当前线程。
else if (current == getExclusiveOwnerThread()) {
//如果是当前线程在持有锁,那么这里累计一下重入次数。
int nextc = c + acquires;
if (nextc < 0) // overflow 重入次数最大不能超过int的最大值
throw new Error("Maximum lock count exceeded");
//设置到AQS的state中
setState(nextc);
return true;
}
//如果锁已经被持有,且持有线程不是当前线程,返回false。
return false;
}
protected final boolean tryRelease(int releases) {
//释放时,这里要减去重入次数。
int c = getState() - releases;
//判断控制权关系是否正确。
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
//如果当前线程完全释放了锁(重入次数为0)
free = true;
//解除所有权关系。
setExclusiveOwnerThread(null);
}
//设置重入次数。
setState(c);
//返回是否释放成功(或者说是否完全释放)。
return free;
}
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
final ConditionObject newCondition() {
return new ConditionObject();
}
// Methods relayed from outer class
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
final boolean isLocked() {
return getState() != 0;
}
/**
* Reconstitutes this lock instance from a stream.
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}

接下来先看一下非公平版本的子类:

    /**
* Sync object for non-fair locks
*/
final static class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
//这里首先尝试一个短代码路径,直接CAS设置state,尝试获取锁。
//相当于一个插队的动作(可能出现AQS等待队列里有线程在等待,但当前线程竞争成功)。
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);//如果CAS失败,调用AQS的独占请求方法。
}
protected final boolean tryAcquire(int acquires) {
//调用上面父类的nonfairTryAcquire方法。
return nonfairTryAcquire(acquires);
}
}

再来先看一下公平版本的子类:

    /**
* Sync object for fair locks
*/
final static class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/**
* 公平版本的tryAcquire。
* 只有在递归(重入)或者同步队列中没有其他线程
* 或者当前线程是等待队列中的第一个线程时才准许访问。
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) { //如果当前锁可用,且同步等待队列中没有其他线程,那么尝试设置state
setExclusiveOwnerThread(current); //如果设置成功,相当于获取锁成功,设置所有权关系。
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
//如果当前线程已经持有该锁,那么累计重入次数。
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
       小总结一下:
       非公平版的锁-加锁操作
  1. 当前线程首先会无条件的执行一个CAS操作来获取锁,如果CAS操作成功,获取锁成功。
  2. 如果第1步没成功,当前会检查锁是否被其他线程持有,也就是锁是否可用。
  3. 如果没有其他线程持有锁,会以CAS的方式尝试获取锁,如果CAS操作成功,获取锁成功。
  4. 如果有其他线程持有锁,会判断一下持有锁的线程是否为当前线程,如果是当前线程,重入次数+1,获取锁成功。
  5. 根据AQS的分析,上述2、3、4步会执行多次,如果最终获取锁失败,当前线程会被阻塞,等待其他线程执行解锁操作将其唤醒。
       公平版的锁-加锁操作
  1. 当前线程首先会检查锁是否被其他线程持有,并且当前同步等待队列里有没有其他线程在等待。
  2. 如果没有其他线程持有锁,且同步等待队列里没有其他线程,会以CAS的方式尝试获取锁,如果CAS操作成功,获取锁成功。
  3. 如果有其他线程持有锁,会判断一下持有锁的线程是否为当前线程,如果是当前线程,重入次数+1,获取锁成功。
  4. 根据AQS的分析,上述1、2、3步会执行多次,如果最终获取锁失败,当前线程会被阻塞,等待其他线程执行解锁操作将其唤醒。
       非公平版和公平版锁的解锁操作一样
  1. 当前线程首先将锁重入次数减1(AQS的state),如果减1后结果为0,将当前同步器的线程信息置空,并唤醒同步等待队列中队头的等待线程。
  2. 如果第1步中,重入次数减1后结果不为0(说明当前线程还持有当前锁),方法结束。
  • 有了内部的基础同步机制,ReentrantLock的实现就很简单了,直接看代码:
    /**
* 默认情况下构建非公平锁。
*/
public ReentrantLock() {
sync = new NonfairSync();
}
/**
* 根据给定的公平策略生成相应的实例。
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantLock(boolean fair) {
sync = (fair)? new FairSync() : new NonfairSync();
} public void lock() {
sync.lock();
} public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
} public boolean tryLock() {
return sync.nonfairTryAcquire(1);
} public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
} public void unlock() {
sync.release(1);
} public Condition newCondition() {
return sync.newCondition();
}

最后看一下一些支持监测的方法:

    /**
* 获取当前线程的对当前锁的持有(重入)次数。
*/
public int getHoldCount() {
return sync.getHoldCount();
}
/**
* 判断当前锁是否被当前线程持有。
*/
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
/**
* 判断当前锁是否被(某个线程)持有。
*/
public boolean isLocked() {
return sync.isLocked();
}
/**
* 当前锁是否为公平锁。
*/
public final boolean isFair() {
return sync instanceof FairSync;
}
/**
* 获取持有当前锁的线程。
*/
protected Thread getOwner() {
return sync.getOwner();
}
/**
* 判断是否有线程在当前锁的同步等待队列中等待。
*/
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
/**
* 判断给定的线程是否在当前锁的同步等待队列中等待。
*/
public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}
/**
* 获取当前锁的同步等待队列中的等待线程(估计)数量。
*/
public final int getQueueLength() {
return sync.getQueueLength();
}
/**
* 获取当前锁的同步等待队列中等待的线程。
*/
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
/**
* 判断是否有线程在给定条件的条件等待队列上等待。
*/
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
/**
* 获取给定条件的条件等待队列中等待线程的(估计)数量。
*/
public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
}
/**
* 获取给定条件的条件等待队列中等待线程。
*/
protected Collection<Thread> getWaitingThreads(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
}

Jdk1.6 JUC源码解析(7)-locks-ReentrantLock的更多相关文章

  1. Jdk1.6 JUC源码解析(12)-ArrayBlockingQueue

    功能简介: ArrayBlockingQueue是一种基于数组实现的有界的阻塞队列.队列中的元素遵循先入先出(FIFO)的规则.新元素插入到队列的尾部,从队列头部取出元素. 和普通队列有所不同,该队列 ...

  2. Jdk1.6 JUC源码解析(6)-locks-AbstractQueuedSynchronizer

    功能简介: AbstractQueuedSynchronizer(以下简称AQS)是Java并发包提供的一个同步基础机制,是并发包中实现Lock和其他同步机制(如:Semaphore.CountDow ...

  3. Jdk1.6 JUC源码解析(1)-atomic-AtomicXXX

    转自:http://brokendreams.iteye.com/blog/2250109 功能简介: 原子量和普通变量相比,主要体现在读写的线程安全上.对原子量的是原子的(比如多线程下的共享变量i+ ...

  4. Jdk1.6 JUC源码解析(13)-LinkedBlockingQueue

    功能简介: LinkedBlockingQueue是一种基于单向链表实现的有界的(可选的,不指定默认int最大值)阻塞队列.队列中的元素遵循先入先出 (FIFO)的规则.新元素插入到队列的尾部,从队列 ...

  5. 【JUC源码解析】ScheduledThreadPoolExecutor

    简介 它是一个线程池执行器(ThreadPoolExecutor),在给定的延迟(delay)后执行.在多线程或者对灵活性有要求的环境下,要优于java.util.Timer. 提交的任务在执行之前支 ...

  6. 【JUC源码解析】SynchronousQueue

    简介 SynchronousQueue是一种特殊的阻塞队列,该队列没有容量. [存数据线程]到达队列后,若发现没有[取数据线程]在此等待,则[存数据线程]便入队等待,直到有[取数据线程]来取数据,并释 ...

  7. 【JUC源码解析】ForkJoinPool

    简介 ForkJoin 框架,另一种风格的线程池(相比于ThreadPoolExecutor),采用分治算法,工作密取策略,极大地提高了并行性.对于那种大任务分割小任务的场景(分治)尤其有用. 框架图 ...

  8. 【JUC源码解析】DelayQueue

    简介 基于优先级队列,以过期时间作为排序的基准,剩余时间最少的元素排在队首.只有过期的元素才能出队,在此之前,线程等待. 源码解析 属性 private final transient Reentra ...

  9. 【JUC源码解析】CyclicBarrier

    简介 CyclicBarrier,一个同步器,允许多个线程相互等待,直到达到一个公共屏障点. 概述 CyclicBarrier支持一个可选的 Runnable 命令,在一组线程中的最后一个线程到达之后 ...

随机推荐

  1. PIC32MZ Live update bootloader

    PIC32MZ 的 flash memory 支持live update, 这是个全新的特性,在之前的所有PIC不管是8位还是16位的单片机上面都没有这个特性.我写过很多PIC 8位和16位单片机的b ...

  2. python类与对象基本语法

    面向对象编程的2个非常重要的概念:类和对象. 对象是面向对象编程的核心,在使用对象的过程中,为了将具有共同特征和行为的一组对象抽象定义,提出了另外一个新的概念--类. 类就相当于制造飞机时的图纸,用它 ...

  3. AOP学习笔记二

    Spring AOP采用Java作为AOP的实现语言(AOL),学习曲线平滑,Spring AOP对AspectJ也提供了很好的集成与支持.最为第二代的AOP,采用动态代理机制和字节码生产技术实现,在 ...

  4. 微信jssdk分享链接给好友,图标只能自己看到,对方看不到!

    问题描述:调用微信jssdk分享接口时,所有参数均正常的情况下(排除参数错误的情况),分享给好友后,其中的小图标自己看得到,接收到分享的好友看不到小图标! (如上图所示!) 出现上述问题的原因:本人猜 ...

  5. sublime text 3 打造舒适黑色主题

    效果: 这里我使用了两个主题插件组合成的 Spacegray Afterglow Ctrl+Shift+P -> Package Control:Install Packages 分别输入Spa ...

  6. fir.im Weekly - 如何在 iOS 上构建 TensorFlow 应用

    本期 fir.im Weekly 收集了最近新鲜出炉的 iOS /Android 技术分享,包括 iOS 系统开发 TensorFlow 教程.iOS 新架构.iOS Notifications 推送 ...

  7. cocos2d-x-Json/XML文件

    数据存储几种方式 1. 数据库 2. 文件 3. 内存 这里介绍Json格式与XML格式的文件存储 常用的文件存储数据的格式 1. Json格式 2. XML格式 Json适合存储小数据,XML适合存 ...

  8. 【算法】字符串匹配之Z算法

    求文本与单模式串匹配,通常会使用KMP算法.后来接触到了Z算法,感觉Z算法也相当精妙.在以前的博文中也有过用Z算法来解决字符串匹配的题目. 下面介绍一下Z算法. 先一句话讲清楚Z算法能求什么东西. 输 ...

  9. Java--向数据库添加txt文件中的批量数据

    大家可能会遇到这样的问题,在做一个项目时需要操作数据库,需要有大量的数据需要导入到数据库中,这部分数据存到了txt文档中(可以把Word文档中的数据弄到txt文档),总不能每一条数据都复制黏贴到数据库 ...

  10. Java设置Excel有效性

    XSSFWorkbook wb = new XSSFWorkbook(); XSSFSheet sheet = wb.createSheet("Excel"); String[] ...