cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记
1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签。
在Convolution Layer里,图像保持原样,依旧是32*32*3,把它和一个5*5*3的filter进行卷积运算(filter和原图像有相同的通道数,比如这里都是3)。这里的“卷积”并不是严格按照信号处理里先把图像翻转,这里只是对应像素乘积累加,可以按照fully connected layer的写法,把5*5*3的filter展开成75*1,原图像也抠出同样大小的一块并展开成一维,然后线性运算wTx+b。如此运算后,最终得到28*28*1的结果(32-5+1=28),名字叫activation map。每一个filter实际代表一种特征,通过卷积查看原图的各个局部位置与这个特征的匹配程度。实际处理中会用好多个不同的filter,如果用了6个,则得到28*28*6的“新图像”。卷积是线性运算,所以之后还要再跟一个非线性的激活函数(比如ReLU)。几个卷积层之后,还会再用一个POOL(池化层:池化层的输入一般来源于上一个卷积层,主要作用是增强鲁棒性,并且减少了参数的数量,防止过拟合现象的发生)。
卷积神经网络实际就是一系列的类似卷积层的堆叠。从底层到高层的卷积层对应的特征越来越复杂。
2. 上一部分的卷积过程是每次平移一个像素(stride=1),可以移动几个像素,最终输出大小是(N-F)/stride+1,这里假设图像是N*N,filter是F*F。输出大小必须是整数,如果不是的话,stride就不能取这个数。
还有两个问题:1)每次卷积会缩小图片,对于卷积层很多的深度学习网络,图片会很快缩的非常小。2)丢失了边缘信息。为了解决这个问题,实际操作中,会在图像周边补0,这时候输出大小是(N+2*P-F)/stride+1,这里P是两边各补的0的个数。
总结一下:
输入图片大小是W1*H1*D1。
Hyperparameters:1)filter的数量K,一般取2的指数个,比如32,64,128,512。
2)filter的大小F,一般取1,3,5。(边长为1的filter是有意义的,因为这相当于是对每个像素的各个通道加权求和。)
3)步长stride S,一般取1,2。stride有降低图片分辨率的作用,或者说降采样。
4)单边补零的个数P。
输出图片大小是W2*H2*D2:
1)W2=(W1-F+2P)/S+1.
2)H2=(H1-F+2P)/S+1.
3)D2=K。
一共F*F*D1*K个权重参数,K个bias参数。
3. Pooling Layer:对图片降采样。
最常用的是Max pooling:降采样时取一个小区域里的最大值。可以这么直观理解,比如我们想在一个小区域里找某个特征,这个小区域内任何一处的值很高,都代表我们在这个小区域找到了这个特征,所以用它来表征这个区域。
卷积过程的步长stride大于1和pooling都是为了降采样,二者并不是必须有的,根据实际问题调整架构。
总结一下:
输入图片大小是W1*H1*D1。
Hyperparameters:1)pooling的大小F,一般取2,3。
2)步长stride S,一般取2。
输出图片大小是W2*H2*D2:
1)W2=(W1-F)/S+1.
2)H2=(H1-F)/S+1.
3)D2=D1。
不引入新的参数,并且一般不会补0。
cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记的更多相关文章
- cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture5 Convolutional Neural Networks
1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...
- cs231n spring 2017 lecture8 Deep Learning Networks 听课笔记
1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1) ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记
这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture6 Training Neural Networks I 听课笔记
1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...
- cs231n spring 2017 lecture7 Training Neural Networks II
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
- cs231n spring 2017 lecture6 Training Neural Networks I
1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...
随机推荐
- [LeetCode] 二叉树相关题目(不完全)
最近在做LeetCode上面有关二叉树的题目,这篇博客仅用来记录这些题目的代码. 二叉树的题目,一般都是利用递归来解决的,因此这一类题目对理解递归很有帮助. 1.Symmetric Tree(http ...
- iOS iOS10 的适配问题
其他:Xcode8 iOS10 的新特性 1.系统判断方法失效:2.隐私数据的访问问题:3.UIColor 问题4.真彩色的显示5.ATS问题6.UIStatusBar问题7.UITextField8 ...
- hibernate 3.6.10 maven pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- KD树小结
很久之前我就想过怎么快速在二维平面上查找一个区域的信息,思考许久无果,只能想到几种优秀一点的暴力. Kd树就是干上面那件事的. 别的不多说,赶紧把自己的理解写下来,免得凉了. KD树的组成 以维护k维 ...
- 如何写一个SSH项目(一)程序设计大体思路
SSH:分别是指Spring,Struts,Hibernate. 后来Struts2代替了Struts,所以我们常说的SSH是指Spring,Struts2,Hibenate. 其中Spring一般用 ...
- LAMP第三部分php,mysql配置
php配置 1. 配置disable_functiondisable_functions = eval,assert,popen,passthru,escapeshellarg,escapeshell ...
- LAMP第二部分apache配置
课程大纲:1. 下载discuz! mkdir /data/wwwcd /data/wwwwget http://download.comsenz.com/DiscuzX/3.2/Discuz_X3 ...
- MySQL 最左前缀(Leftmost Prefix) & 组合索引(复合索引,多列索引)
资料来源于网络,仅供参考学习. CREATE TABLE test(a INT,b INT,c INT,KEY idx(a,b,c)); 优: SELECT * FROM test WHERE a=1 ...
- RBAC__权限设计__结构化表的输出(不知道怎么描述标题,反正就是设计表) 难点重点 必须掌握🤖
RBAC 反正就是很厉害. 干就完事了,不BB 直接进入正题 本文写的就是如何设计表,以及设计表的思路. 用户和角色 : 多对多字段放在哪张表更好点? 用户找角色,角色找权限. 放在user表中,是正 ...
- Java---hashCode()和equals()
1.hashCode()和equals() API hashCode()和equals()都来自上帝类Object, 所有的类都会拥有这两个方法,特定时,复写它们. 它们是用来在同一类中做比较用的,尤 ...