题目描述

小强喜欢数列。有一天,他心血来潮,写下了三个长度均为n的数列。

阿米巴也很喜欢数列。但是他只喜欢其中一种,波动数列。

阿米巴把他的喜好告诉了小强。小强便打算找出这三个数列内的最长波动数列。

也就是说,如果我们将三个数列记做a[n][3],他必须要构造一个二元组序列:<p[i], q[i]>,使得对于任何 i>1 有:

p[i] > p[i-1]

若q[i] = 0,a[p[i]][q[i]] >= a[p[i-1]][q[i-1]]

若q[i] = 1,a[p[i]][q[i]] <= a[p[i-1]][q[i-1]]

若q[i] = 2,只要保持段内同向即可(就是对于连续的一段q[i]=2,要么都有a[p[i]][q[i]] >= a[p[i-1]][q[i-1]],要么都有a[p[i]][q[i]] <= a[p[i-1]][q[i-1]])。

小强希望这个二元组序列尽可能长。

提示:当q[i] != q[i-1]时,数列的增减性由q[i]而非q[i-1]决定。

清晰版题目描述

小强拿到一个3×n的数组,要在每一列选一个数(或者不选),满足以下条件:

1.如果在第一行选,那它必须大于等于上一个数

2.如果在第二行选,那么必须小于等于上一个数

3.如果在第三行选,对于连续的一段在第三行选的数,必须满足方向相同(都小于等于上一个数或者都大于等于上一个数)

  清晰版描述简直坑人。。。

  思路非常明显,智障dp。状态转移方程不读错题的话简直秒出。之后考虑转移优化。显然,一个范围内的最大值可以用线段树维护,当然要事先吧数据离散化。代码很简单,二十分钟就可以敲完,然后我就爆了一个钟的空间23333

#include<bits/stdc++.h>
using namespace std;
#define MAXN 1000000+10
typedef long long LL;
int n,tot=,ans=,pos[][MAXN],dp[][MAXN],tr[][MAXN*];
LL a[][MAXN],b[MAXN*];
void pushup(int t,int k){tr[t][k]=max(tr[t][k<<],tr[t][k<<|]);}
void build(int t,int k,int l,int r){
tr[t][k]=;
if(l==r)return;
int mid=(l+r)>>;
build(t,k<<,l,mid);
build(t,k<<|,mid+,r);
}
void update(int t,int k,int l,int r,int p,int val){
if(l==r&&l==p){
tr[t][k]=val;
return;
}
int mid=(l+r)>>;
if(p<=mid)update(t,k<<,l,mid,p,val);
else update(t,k<<|,mid+,r,p,val);
pushup(t,k);
}
int query(int t,int k,int l,int r,int L,int R){
if(l>=L&&r<=R)return tr[t][k];
int mid=(l+r)>>;
if(R<=mid)return query(t,k<<,l,mid,L,R);
else if(L>mid)return query(t,k<<|,mid+,r,L,R);
else return max(query(t,k<<,l,mid,L,R),query(t,k<<|,mid+,r,L,R));
}
int main(){
//freopen("data.in","r",stdin);
scanf("%d",&n);
for(int i=;i<=;i++)
for(int j=;j<=n;j++){
scanf("%lld",&a[i][j]);
b[++tot]=a[i][j];
}
sort(b+,b+tot+);
tot=unique(b+,b+tot+)-b,tot--;
for(int i=;i<=;i++)build(i,,,tot);
for(int i=;i<=;i++)
for(int j=;j<=n;j++)
pos[i][j]=lower_bound(b+,b+tot+,a[i][j])-b; for(int i=;i<=;i++)update(i,,,tot,pos[i==?:i][],),dp[i][]=;
for(int i=;i<=n;i++){
for(int k=;k<=;k++)dp[k][i]=;
for(int k=;k<=;k++){
if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,,pos[][i])+);
else if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,pos[][i],tot)+);
else if(k==)
for(int j=;j<=;j++)
dp[k][i]=max(dp[k][i],query(j,,,tot,pos[][i],tot)+);
else
for(int j=;j<=;j++)
if(j!=)dp[k][i]=max(dp[k][i],query(j,,,tot,,pos[][i])+);
}
for(int k=;k<=;k++){
update(k,,,tot,pos[k==?:k][i],dp[k][i]);
ans=max(ans,dp[k][i]);
}
}
printf("%d\n",ans);
return ;
}

洛谷 P3928 Sequence的更多相关文章

  1. 洛谷P3928 Sequence2(dp,线段树)

    题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...

  2. [洛谷P5136]sequence

    题目大意:有$T(T\leqslant10^5)$组询问,每次求$A_n(n\leqslant10^{18})$:$$A_n=\left\lceil\left(\dfrac{\sqrt5+1}2\ri ...

  3. 洛谷P3928 SAC E#1 - 一道简单题 Sequence2

    提交地址 题目背景 小强和阿米巴是好朋友. 题目描述 小强喜欢数列.有一天,他心血来潮,写下了三个长度均为n的数列. 阿米巴也很喜欢数列.但是他只喜欢其中一种,波动数列. 阿米巴把他的喜好告诉了小强. ...

  4. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  5. 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)

    洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...

  6. 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)

    题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...

  7. 洛谷P1432 倒水问题(CODEVS.1226)

    To 洛谷.1432 倒水问题 题目背景 In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were co ...

  8. 洛谷P3459 [POI2007]MEG-Megalopolis [树链剖分]

    题目传送门 MEG 题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postma ...

  9. [洛谷P2852] [USACO06DEC]牛奶模式Milk Patterns

    洛谷题目链接:[USACO06DEC]牛奶模式Milk Patterns 题目描述 Farmer John has noticed that the quality of milk given by ...

随机推荐

  1. Go Deeper

    Go Deeper Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Sub ...

  2. 【G彩娱乐网】作为一名程序员,我应该如何选购一台电脑?

    G彩娱乐网说到程序员专用电脑,那肯定是苹果电脑.优点有很多,比如白平衡特别准.酷炫的黑科技.特别方便的软件等显而易见的优势:也有能够增加提案通过率.专注工作提高工作效率这样的玄学buff. 但是!并不 ...

  3. Python基础-注释-变量赋值

    一.注释 # 注释 \n 行分隔符 \ 继续上一行 '''   *** ''' 多行注释 二.基本规则 : 分开代码块(组)   头$尾 缩进块  语句代码块  用缩进深度区分 空行     用于分割 ...

  4. Redis的使用初探

    Redis Redis将其数据库完全保存在内存中,仅使用磁盘进行持久化. 与其它键值数据存储相比,Redis有一组相对丰富的数据类型. Redis可以将数据复制到任意数量的从机中 Redis的安装 官 ...

  5. 【WEB API项目实战干货系列】- API访问客户端(WebApiClient适用于MVC/WebForms/WinForm)(四)

    这几天没更新主要是因为没有一款合适的后端框架来支持我们的Web API项目Demo, 所以耽误了几天, 目前最新的代码已经通过Sqlite + NHibernate + Autofac满足了我们基本的 ...

  6. eclipse中导入jsp等工程使用过程中常遇问题

    1.导入的工程JSP文件出现报错的情况 这个一般不怎么影响文件的执行,这些文件飘红主要是因为eclipse的校验问题. 具体错误信息:Multiple annotations found at thi ...

  7. 前后端分手大师——MVVM 模式

    之前对 MVVM 模式一直只是模模糊糊的认识,正所谓没有实践就没有发言权,通过这两年对 Vue 框架的深入学习和项目实践,终于可以装B了有了拨开云雾见月明的感觉. 简而言之 Model–View–Vi ...

  8. ANDROID基础ACTIVITY篇之Activity的生命周期(一)

    首先我们先来看一下官方的Android的生命周期图: 根据这个流程图我们可以看到Activity的生命周期一共有7个方法,那么接下来我们就来聊聊这些方法执行过程. 首先在两个Activity(Main ...

  9. 深度学习之tensorflow (一)

    一.TensorFlow简介 1.TensorFlow定义: tensor  :张量,N维数组 Flow   :  流,基于数据流图的计算 TensorFlow : 张量从图像的一端流动到另一端的计算 ...

  10. python进阶------进程线程(一)

    Python中的进程线程 一.进程线程的概念 1.1进程: 进程就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成.我们编写的程序用来描述进程要完成哪些功能以及 ...