AdaBoost入门
写一点自己理解的AdaBoost,然后再贴上面试过程中被问到的相关问题。按照以下目录展开。
当然,也可以去我的博客上看
- Boosting提升算法
- AdaBoost
- 原理理解
- 实例
- 算法流程
- 公式推导
- 面经
Boosting提升算法
AdaBoost是典型的Boosting算法,属于Boosting家族的一员。在说AdaBoost之前,先说说Boosting提升算法。Boosting算法是将“弱学习算法“提升为“强学习算法”的过程,主要思想是“三个臭皮匠顶个诸葛亮”。一般来说,找到弱学习算法要相对容易一些,然后通过反复学习得到一系列弱分类器,组合这些弱分类器得到一个强分类器。Boosting算法要涉及到两个部分,加法模型和前向分步算法。加法模型就是说强分类器由一系列弱分类器线性相加而成。一般组合形式如下:
$$F_M(x;P)=\sum_{m=1}^nβ_mh(x;a_m)$$
其中,$h(x;a_m)$ 就是一个个的弱分类器,$a_m$是弱分类器学习到的最优参数,$β_m$就是弱学习在强分类器中所占比重,$P$是所有$a_m$和$β_m$的组合。这些弱分类器线性相加组成强分类器。
前向分步就是说在训练过程中,下一轮迭代产生的分类器是在上一轮的基础上训练得来的。也就是可以写成这样的形式:
$$F_m (x)=F_{m-1}(x)+ β_mh_m (x;a_m)$$
由于采用的损失函数不同,Boosting算法也因此有了不同的类型,AdaBoost就是损失函数为指数损失的Boosting算法。
AdaBoost
原理理解
基于Boosting的理解,对于AdaBoost,我们要搞清楚两点:
- 每一次迭代的弱学习$h(x;a_m)$有何不一样,如何学习?
- 弱分类器权值$β_m$如何确定?
对于第一个问题,AdaBoost改变了训练数据的权值,也就是样本的概率分布,其思想是将关注点放在被错误分类的样本上,减小上一轮被正确分类的样本权值,提高那些被错误分类的样本权值。然后,再根据所采用的一些基本机器学习算法进行学习,比如逻辑回归。
对于第二个问题,AdaBoost采用加权多数表决的方法,加大分类误差率小的弱分类器的权重,减小分类误差率大的弱分类器的权重。这个很好理解,正确率高分得好的弱分类器在强分类器中当然应该有较大的发言权。
实例
为了加深理解,我们来举一个例子。
有如下的训练样本,我们需要构建强分类器对其进行分类。x是特征,y是标签。
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 |
令权值分布$D_1=(w_{1,1},w_{1,2},…,w_{1,10} )$
并假设一开始的权值分布是均匀分布:$w_{1,i}=0.1,i=1,2,…,10$
现在开始训练第一个弱分类器。我们发现阈值取2.5时分类误差率最低,得到弱分类器为:
当然,也可以用别的弱分类器,只要误差率最低即可。这里为了方便,用了分段函数。得到了分类误差率$e_1=0.3$。
第二步计算$(G_1 (x)$在强分类器中的系数$α_1=\frac{1}{2} log\frac{ 1-e_1}{e_1}=0.4236$,这个公式先放在这里,下面再做推导。
第三步更新样本的权值分布,用于下一轮迭代训练。由公式:
$$w_{2,i}=\frac{w_{1,i}}{z_1}exp(-α_1 y_i G_1 (x_i )),i=1,2,…,10$$
得到新的权值分布,从各0.1变成了:
$$D_2=(0.0715,0.0715,0.0715,0.0715,0.0715,0.0715,0.1666,0.1666,0.1666,0.0715)$$
可以看出,被分类正确的样本权值减小了,被错误分类的样本权值提高了。
第四步得到第一轮迭代的强分类器:
$$sign(F_1 (x))=sign(0.4236G_1 (x))$$
以此类推,经过第二轮……第N轮,迭代多次直至得到最终的强分类器。迭代范围可以自己定义,比如限定收敛阈值,分类误差率小于某一个值就停止迭代,比如限定迭代次数,迭代1000次停止。这里数据简单,在第3轮迭代时,得到强分类器:
$$sign(F_3 (x))=sign(0.4236G_1 (x)+0.6496G_2 (x)+0.7514G_3 (x))$$
的分类误差率为0,结束迭代。
$F(x)=sign(F_3 (x))$就是最终的强分类器。
算法流程
总结一下,得到AdaBoost的算法流程:
- 输入:训练数据集$T=\{(x_1,y_1),(x_2,y_2),(x_N,y_N)\}$,其中,$x_i∈X⊆R^n$,$y_i∈Y={-1,1}$,迭代次数$M$
- 1. 初始化训练样本的权值分布:$D_1=(w_{1,1},w_{1,2},…,w_{1,i}),w_{1,i}=\frac{1}{N},i=1,2,…,N$。
- 2. 对于$m=1,2,…,M$
- (a) 使用具有权值分布$D_m$的训练数据集进行学习,得到弱分类器$G_m (x)$
- (b) 计算$G_m(x)$在训练数据集上的分类误差率:
$$e_m=\sum_{i=1}^Nw_{m,i} I(G_m (x_i )≠y_i )$$
- (c) 计算$G_m (x)$在强分类器中所占的权重:
$$α_m=\frac{1}{2}log \frac{1-e_m}{e_m} $$
- (d) 更新训练数据集的权值分布(这里,$z_m$是归一化因子,为了使样本的概率分布和为1):
$$w_{m+1,i}=\frac{w_{m,i}}{z_m}exp(-α_m y_i G_m (x_i )),i=1,2,…,10$$
$$z_m=\sum_{i=1}^Nw_{m,i}exp(-α_m y_i G_m (x_i ))$$
- 3. 得到最终分类器:
$$F(x)=sign(\sum_{i=1}^Nα_m G_m (x))$$
公式推导
现在我们来搞清楚上述公式是怎么来的。
假设已经经过$m-1$轮迭代,得到$F_{m-1} (x)$,根据前向分步,我们可以得到:
$$F_m (x)=F_{m-1} (x)+α_m G_m (x)$$
我们已经知道AdaBoost是采用指数损失,由此可以得到损失函数:
$$Loss=\sum_{i=1}^Nexp(-y_i F_m (x_i ))=\sum_{i=1}^Nexp(-y_i (F_{m-1} (x_i )+α_m G_m (x_i )))$$
这时候,$F_{m-1}(x)$是已知的,可以作为常量移到前面去:
$$Loss=\sum_{i=1}^N\widetilde{w_{m,i}} exp(-y_i α_m G_m (x_i ))$$
其中,$\widetilde{w_{m,i}}=exp(-y_i (F_{m-1} (x)))$ ,敲黑板!这个就是每轮迭代的样本权重!依赖于前一轮的迭代重分配。
是不是觉得还不够像?那就再化简一下:
$$\widetilde{w_{m,i}}=exp(-y_i (F_{m-1} (x_i )+α_{m-1} G_{m-1} (x_i )))=\widetilde{w_{m-1,i}} exp(-y_i α_{m-1} G_{m-1} (x_i ))$$
现在够像了吧?ok,我们继续化简Loss:
$$Loss=\sum_{y_i=G_m(x_i)}\widetilde{w_{m,i}} exp(-α_m)+\sum_{y_i≠G_m(x_i)}\widetilde{w_{m,i}} exp(α_m)$$
$$=\sum_{i=1}^N\widetilde{w_{m,i}}(\frac{\sum_{y_i=G_m(x_i)}\widetilde{w_{m,i}}}{\sum_{i=1}^N\widetilde{w_{m,i}}}exp(-α_m)+\frac{\sum_{y_i≠G_m(x_i)}\widetilde{w_{m,i}}}{\sum_{i=1}^N\widetilde{w_{m,i}}}exp(α_m))$$
公式变形之后,炒鸡激动!$\frac{\sum_{y_i≠G_m(x_i)}\widetilde{w_{m,i}}}{\sum_{i=1}^N\widetilde{w_{m,i}}}$这个不就是分类误差率$e_m$吗???!重写一下,
$$Loss=\sum_{i=1}^N\widetilde{w_{m,i}}exp(-α_m)+e_m exp(α_m))$$
Ok,这样我们就得到了化简之后的损失函数。接下来就是求导了。
对$α_m$求偏导,令$\frac{∂Loss}{∂α_m }=0$得到:
$$α_m=\frac{1}{2}log\frac{1-e_m}{e_m} $$
真漂亮!
另外,AdaBoost的代码实战与详解请戳代码实战之AdaBoost
面经
今年8月开始找工作,参加大厂面试问到的相关问题有如下几点:
1、手推AdaBoost
2、与GBDT比较
3、AdaBoost几种基本机器学习算法哪个抗噪能力最强,哪个对重采样不敏感?
AdaBoost入门的更多相关文章
- Adaboost入门教程——最通俗易懂的原理介绍(图文实例)
https://blog.csdn.net/px_528/article/details/72963977 写在前面 说到Adaboost,公式与代码网上到处都有,<统计学习方法>里面有详 ...
- 100天搞定机器学习|Day57 Adaboost知识手册(理论篇)
Boosting算法 Boosting是一种用来提高弱分类器准确度的算法,是将"弱学习算法"提升为"强学习算法"的过程,主要思想是"三个臭皮匠顶个诸葛 ...
- 机器学习笔记·adaboost
一.算法简介 Adaboost算法是一种集成算法,所谓集成算法就是将多个弱的分类器组合在一起变成一个强的分类器.弱分类器通常是指分类效果比随机分类稍微好一点的分类器.就像我们在做一个重要决定的时候,通 ...
- [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来 ...
- Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...
- 【转载】GBDT(MART) 迭代决策树入门教程 | 简介
转载地址:http://blog.csdn.net/w28971023/article/details/8240756 GBDT(Gradient Boosting Decision Tree) 又叫 ...
- 转:GBDT(MART) 迭代决策树入门教程 | 简介
在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下: GBDT(Gradient Boosting Decision Tree) 又 叫 MART(Multiple Additive R ...
- 16-GDBT(MART) 迭代决策树入门教程 | 简介
转载:http://blog.csdn.net/w28971023/article/details/8240756 GBDT(Gradient Boosting Decision Tree) 又叫 M ...
- xgboost入门与实战(原理篇)
sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campai ...
随机推荐
- 初识ajax
ajax优势:不刷新整个页面,只刷新局部(无刷新) 无刷新的好处: 只更新部分页面,有效利用宽带 提供连续的用户体验 提供类似C/S的交互效果,操作更方面 什么是ajax AJAX :代表 Async ...
- C#开发微信门户及应用(47) - 整合Web API、微信后台管理及前端微信小程序的应用方案
在微信开发中,我一直强调需要建立一个比较统一的Web API接口体系,以便实现数据的集中化,这样我们在常规的Web业务系统,Winform业务系统.微信应用.微信小程序.APP等方面,都可以直接调用基 ...
- Uva 01124, POJ 3062 Celebrity jeopardy
It's hard to construct a problem that's so easy that everyone will get it, yet still difficult enoug ...
- 数据库——MySQL——>Java篇
MySQL MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是 ...
- 管道设计CAD系统中重量重心计算
管道设计CAD系统中重量重心计算 eryar@163.com Abstract. 管道设计CAD系统中都有涉及到重量重心计算的功能,这个功能得到的重心数据主要用于托盘式造船时方便根据重心设置吊装配件. ...
- MongodDB学习笔记(二)(复制)
mongoDB的复制非常容易配置,其实现有两种方式,一种是主从复制,一种是复制集,前者的好处是容易配置,但是如果主服务器宕掉了,整个系统就崩溃了,后者的好处是如果主服务器宕掉了,其他服务器会通过投票选 ...
- 前端开发必备之MDN文档
想下载MDN文档的看前面的内容就可以了. HTML 源码下载 MDN官方下载地址:https://developer.mozilla.org/media/developer.mozilla.org.t ...
- Handler的解析和使用
1.handler为android中多线程间通信的一种机制, @1android中只允许在UI线程(主线程)操作或改变UI,其他线程不能操作UI. @2其他线程有刷新UI的需要,所以得告诉UI线程,这 ...
- IT服务(运维)管理实施的几个要点--序言
IT服务(运维)管理(不是IT运维技术)是IT行业当中相对比较"窄"的一个分支,通常只被金融.电信等大型数据中心的中高层管理人员所关注.但是根据笔者多年从事IT服务和服务管理的经验 ...
- OpenStack运维(二):OpenStack计算节点的故障和维护
1.计划中的维护 举例:需要升级某一个计算节点的硬件配置,需要将计算节点上的虚拟机迁移后在对其进行操作,分为两种情况. 1.1 云系统使用了共享存储 a. 获取虚拟机列表:nova list --ho ...