Rikka with Subset

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1846    Accepted Submission(s): 896

Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has n positive A1−An and their sum is m. Then for each subset S of A, Yuta calculates the sum of S.

Now, Yuta has got 2n numbers between [0,m]. For each i∈[0,m], he counts the number of is he got as Bi.

Yuta shows Rikka the array Bi and he wants Rikka to restore A1−An.

It is too difficult for Rikka. Can you help her?

 
Input
The first line contains a number t(1≤t≤70), the number of the testcases.

For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104).

The second line contains m+1 numbers B0−Bm(0≤Bi≤2n).

 
Output
For each testcase, print a single line with n numbers A1−An.

It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.

 
Sample Input
2
2 3
1 1 1 1
3 3
1 3 3 1
 
Sample Output
1 2
1 1 1

Hint

In the first sample, A is [1,2]. A has four subsets [],[1],[2],[1,2] and the sums of each subset are 0,1,2,3. So B=[1,1,1,1]

 
Source
思路:从小到大枚举加入的i值,如果当前的数字组合得到的i的数量小于b[i]那么就要加入对应个i值,同时更新f[i](数字和为i的集合个数)的值,直到填满n个数字。
代码:
 #include<bits/stdc++.h>
#define db double
#define ll long long
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define fr(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1e5+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
const int inf = 0x3f3f3f3f;
int b[N],f[N],a[N];
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
int t;
ci(t);
for(int ii=;ii<=t;ii++)
{
int n,m,c=;
ci(n),ci(m);
for(int i=;i<=m;i++) ci(b[i]);
memset(f,,sizeof(f));
f[]=;
for(int i=;i<=m;i++){//我们要加入的数字i
int v=b[i]-f[i];//加入v个i
for(int j=;j<v;j++){
a[++c]=i;
for(int k=m;k>=i;k--){
f[k]+=f[k-i];//更新当前组合的种数
}
}
}
for(int i=;i<=n;i++){
printf("%d%c",a[i],i==n?'\n':' ');
}
}
}

HDU 6092`Rikka with Subset 01背包变形的更多相关文章

  1. hdu 6092 Rikka with Subset 01背包 思维

    dp[i][j]表示前i个元素,子集和为j的个数.d[i][j] = d[i][j] + d[i-1][j-k] (第i个元素的值为k).这里可以优化成一维数组 比如序列为 1 2 3,每一步的dp值 ...

  2. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. hdu 6092 Rikka with Subset(逆向01背包+思维)

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. HDU 6092 Rikka with Subset

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  5. hdu–2369 Bone Collector II(01背包变形题)

    题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...

  6. hdu 6092 Rikka with Subset (集合计数,01背包)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  7. hdu 6092 Rikka with Subset(多重背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6092 #include <cstdio> #include <iostream> ...

  8. HDU 6092 Rikka with Subset(dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...

  9. 2017 ACM暑期多校联合训练 - Team 5 1008 HDU 6092 Rikka with Subset (找规律)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

随机推荐

  1. ORACLE概要文件

    oracle系统为了合理分配和使用系统的资源提出了概要文件的概念.所谓概要文件,就是一份描述如何使用系统的资源(主要是CPU资源)的配置文件.将概要文件赋予某个数据库用户,在用户连接并访问数据库服务器 ...

  2. windbg内存查看(d*)

    d*命令 d{a|b|c|d|D|f|p|q|u|w|W} Address [/c ColumuWidth] [l Length] Address:查看address地址处的内存. ColumnWid ...

  3. 图解如何安装MySQL5.0

    如何安装MySQL5.0数据库.. mysql-5.5.50-winx64下载地址: http://www.jb51.net/softs/363920.html 我的电脑因为提前安装了.所以需要卸载一 ...

  4. windows 10 安装tensorflow

    人工智能一浪接一浪,随着谷歌公布tensorflow源码,尤其是支持windows 10平台的python3.5以上版本,更是让更多人都想用windows操作tensorflow. 第一次安装,也不知 ...

  5. 使用Groovy处理SoapUI中Json response

    最近工作中,处理最多的就是xml和json类型response,在SoapUI中request里面直接添加assertion处理json response的话,可以采用以下方式: import gro ...

  6. IO库

    IO类 C++语言不直接处理出入输出,而是通过一族定义在标准库中的类型来处理IO.这些类型支持从设备读取数据.向设备写入数据的IO操作,设备可以是文件 .控制台窗口 等.还有一些类型允许内存IO ,即 ...

  7. 阿里 java学习之路

    https://maimai.cn/article/detail?fid=96107193&push_id=5603&share_user=http%3A%2F%2Fi9.taou.c ...

  8. JSP入门必读

    JSP基础知识:转自老师上课梳理的笔记,希望对大家有所帮助.有什么不妥当的地方还望大家批评指正. 特别适用于JSP入门的人员使用.1.JSP [1] 简介1.1 HTML    HTML擅长显示一个静 ...

  9. leetcode 001 Two Sun

    Given an array of integers, return indices of the two numbers such that they add up to a specific ta ...

  10. jQuery EasyUI弹出确认对话框(确认操作中.....)

    因为毕业设计的原因,在初期设计系统的时候没有考虑功能的正确性,所以很多的功能都没有加验证和确认的操作,给人在操作方面上有一些不好的感觉(可能失误点击后,数据就别删除,或者增加了),所以在网上找了一些资 ...