Rikka with Subset

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1846    Accepted Submission(s): 896

Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has n positive A1−An and their sum is m. Then for each subset S of A, Yuta calculates the sum of S.

Now, Yuta has got 2n numbers between [0,m]. For each i∈[0,m], he counts the number of is he got as Bi.

Yuta shows Rikka the array Bi and he wants Rikka to restore A1−An.

It is too difficult for Rikka. Can you help her?

 
Input
The first line contains a number t(1≤t≤70), the number of the testcases.

For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104).

The second line contains m+1 numbers B0−Bm(0≤Bi≤2n).

 
Output
For each testcase, print a single line with n numbers A1−An.

It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.

 
Sample Input
2
2 3
1 1 1 1
3 3
1 3 3 1
 
Sample Output
1 2
1 1 1

Hint

In the first sample, A is [1,2]. A has four subsets [],[1],[2],[1,2] and the sums of each subset are 0,1,2,3. So B=[1,1,1,1]

 
Source
思路:从小到大枚举加入的i值,如果当前的数字组合得到的i的数量小于b[i]那么就要加入对应个i值,同时更新f[i](数字和为i的集合个数)的值,直到填满n个数字。
代码:
 #include<bits/stdc++.h>
#define db double
#define ll long long
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define fr(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1e5+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
const int inf = 0x3f3f3f3f;
int b[N],f[N],a[N];
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
int t;
ci(t);
for(int ii=;ii<=t;ii++)
{
int n,m,c=;
ci(n),ci(m);
for(int i=;i<=m;i++) ci(b[i]);
memset(f,,sizeof(f));
f[]=;
for(int i=;i<=m;i++){//我们要加入的数字i
int v=b[i]-f[i];//加入v个i
for(int j=;j<v;j++){
a[++c]=i;
for(int k=m;k>=i;k--){
f[k]+=f[k-i];//更新当前组合的种数
}
}
}
for(int i=;i<=n;i++){
printf("%d%c",a[i],i==n?'\n':' ');
}
}
}

HDU 6092`Rikka with Subset 01背包变形的更多相关文章

  1. hdu 6092 Rikka with Subset 01背包 思维

    dp[i][j]表示前i个元素,子集和为j的个数.d[i][j] = d[i][j] + d[i-1][j-k] (第i个元素的值为k).这里可以优化成一维数组 比如序列为 1 2 3,每一步的dp值 ...

  2. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. hdu 6092 Rikka with Subset(逆向01背包+思维)

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. HDU 6092 Rikka with Subset

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  5. hdu–2369 Bone Collector II(01背包变形题)

    题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...

  6. hdu 6092 Rikka with Subset (集合计数,01背包)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  7. hdu 6092 Rikka with Subset(多重背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6092 #include <cstdio> #include <iostream> ...

  8. HDU 6092 Rikka with Subset(dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...

  9. 2017 ACM暑期多校联合训练 - Team 5 1008 HDU 6092 Rikka with Subset (找规律)

    题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...

随机推荐

  1. js中匿名函数

    今天碰到一道题,里面既包含了匿名函数的知识,也包含了预编译,函数的传参(形参),感觉迷迷糊糊的,所以想着做个总结. var foo={n:1}; (function(foo){ console.log ...

  2. 谈谈分布式版本管理工具Git

    一.主流的版本管理工具 目前在企业中比较主流的版本管理工具有:GIT.SVN.CVS等等. 二.什么是Git? Git是一款免费.开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目.是 L ...

  3. 简述C/C++调用lua中实现的自定义函数

    1.首先说下目的,为什么要这么做 ? 正式项目中,希望主程序尽量不做修改,于是使用C/C++完成功能的主干(即不需要经常变动的部分)用lua这类轻量级的解释性语言实现一些存在不确定性的功能逻辑:所以, ...

  4. Python验证码通过pytesser识别

    Python安装包: 需要安装的包主要有两个: PIL 和 pytesser .tesseract (1).安装PIL:下载地址:http://www.pythonware.com/products/ ...

  5. 大数问题:打印从1到最大的n位数

    //打印从1到最大的n位数:大数问题,用字符串表示数字来避免溢出 bool increment(char* number){ bool isOverFlow = false; int nTakeOve ...

  6. win10下移动硬盘位置不可用无法访问

    win10下移动硬盘位置不可用无法访问 网上搜索得到的答案是: 请参考以下步骤解决: 1.按Windows+R输入"CHKDSK H: /F /R"(H:是硬盘所在盘符./R 找到 ...

  7. java开发3轮技术面+hr面 面经(MT)

    一直没打理博客园  发现博客园阅读量好大,就把前段时间写的一个面经也搬过来咯,大家一起加油.... 作者:小仇Eleven 链接:https://www.nowcoder.com/discuss/37 ...

  8. mysql varchar和char的根本区别深度详解

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt337 VARCHAR 和 CHAR 是两种最主要的字符串类型 .不幸的是,很 ...

  9. JDBC(一)之细说JDBC

    Properties info = new Properties();//要参考数据库文档 info.setProperty("user", "root"); ...

  10. mysql添加外键约束变为索引

    今天有位自己填上一坑:mysql储存引擎 原因就是数据库表引擎为:MyISAM,建立主外键关系需要是InnoDB: 解决方案:alter  table table_name1  engine=inno ...