题意

给出字符串的长度 \(n\) ,以及该字符串是由哪些小写字母组成,现给出一个坏串 \(S\) ,求存在多少种不同的字符串,使得其子串不含坏串。

\(1 \leq n \leq 10^9\)

\(1 \leq |S| \leq 50\)

思路

矩阵快速幂优化 \(\text{dp}\) 是真的常见,在同层状态数不多,但层数很多的时候,要考虑矩阵快速幂优化 \(\text{dp}\) 。

每一层的状态 \(dp[i]\) 表示匹配到哪里,再枚举给定的字母进行转移,只要不匹配到 \(S\) 结尾都是一个合法的转移,转移系数为 \(1\) 。剩下就是板子了。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
typedef unsigned int uint;
using namespace std;
const int N=53;
struct Matrix
{
int n,m;uint a[N][N];
uint *operator [](const int x){return a[x];}
void resize(int _n,int _m){n=_n,m=_m;}
Matrix operator *(const Matrix &_)const
{
Matrix res;res.resize(n,_.m);
FOR(i,1,n)FOR(j,1,_.m)
{
res[i][j]=0;
FOR(k,1,m)res[i][j]+=a[i][k]*_.a[k][j];
}
return res;
}
Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
}A,B;
char d_c[30],str[N];
int c_d[256];
int f[N],F[N][30];
int n,m,l; Matrix Pow(Matrix a,int p)
{
Matrix res;res.resize(a.n,a.n);
FOR(i,1,res.n)FOR(j,1,res.n)res[i][j]=(i==j);
for(;p>0;p>>=1,a*=a)if(p&1)res*=a;
return res;
} int main()
{
int Case;
scanf("%d",&Case);
FOR(cas,1,Case)
{
scanf("%d",&n);
scanf("%s",d_c+1);
scanf("%s",str+1);
l=strlen(d_c+1);
m=strlen(str+1);
FOR(i,1,l)c_d[(int)d_c[i]]=i; f[1]=f[2]=1;FOR(i,1,l)F[1][i]=1+(i==c_d[(int)str[1]]);
FOR(i,2,m)
{
f[i+1]=F[f[i]][c_d[(int)str[i]]];
FOR(j,1,l)
{
if(c_d[(int)str[i]]==j)F[i][j]=i+1;
else F[i][j]=F[f[i]][j];
}
} A.resize(1,m),B.resize(m,m);
FOR(i,1,m)A[1][i]=0;
FOR(i,1,m)FOR(j,1,m)B[i][j]=0; A[1][1]=1;
FOR(i,1,m)FOR(j,1,l)if(F[i][j]<=m)B[i][F[i][j]]++;
A*=Pow(B,n);
uint ans=0;
FOR(i,1,m)ans+=A[1][i]; printf("Case %d: %u\n",cas,ans);
}
return 0;
}

LightOJ 1268 Unlucky Strings(KMP+矩阵乘法+基础DP)的更多相关文章

  1. LightOJ 1268 Unlucky Strings (KMP+矩阵快速幂)

    题意:给出一个字符集和一个字符串和正整数n,问由给定字符集组成的所有长度为n的串中不以给定字符串为连续子串的有多少个? 析:n 实在是太大了,如果小的话,就可以用动态规划做了,所以只能用矩阵快速幂来做 ...

  2. P3193 [HNOI2008]GT考试(KMP+矩阵乘法加速dp)

    P3193 [HNOI2008]GT考试 思路: 设\(dp(i,j)\)为\(N\)位数从高到低第\(i\)位时,不吉利数字在第\(j\)位时的情况总数,那么转移方程就为: \[dp(i,j)=dp ...

  3. bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...

  4. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  5. 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

    题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...

  6. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  7. HNOI2008 GT考试 (KMP + 矩阵乘法)

    传送门 这道题目的题意描述,通俗一点说就是这样:有一个长度为n的数字串(其中每一位都可以是0到9之间任意一个数字),给定一个长度为m的模式串,求有多少种情况,使得此模式串不为数字串的任意一个子串.结果 ...

  8. BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...

  9. [bzoj1009][HNOI2008]GT考试——KMP+矩阵乘法

    Brief Description 给定一个长度为m的禁止字符串,求出长度为n的字符串的个数,满足: 这个字符串的任何一个字串都不等于给定字符串. 本题是POJ3691的弱化版本. Algorithm ...

随机推荐

  1. EasyUI表格DataGrid前端分页和后端分页的总结

    Demo简介 Demo使用Java.Servlet为后台代码(数据库已添加数据),前端使用EasyUI框架,后台直接返回JSON数据给页面 1.配置Web.xml文件 <?xml version ...

  2. 反射(I)

    反射获取属性和属性值 let item = DoctorGroup() guard let dic = InterfaceTests.obtainValues(subObject: item) els ...

  3. arm cortex-m0plus源码学习(二)AMBA3.0_ AHBLite

    1. AMBA总线概述 AMBA2.0 以上版本都是基于单沿时钟.单向信号线的协议[1]. 现在市场上大部分的基于 AMBA 架构的 SoC 产品, 系统总线采用 AHB, 外部总线采用 APB.系统 ...

  4. HasThisTypePatternTriedToSneakInSomeGenericOrParameterizedTypePatternMatchingStuffAnywhereVisitor

    看到的最长的类名: HasThisTypePatternTriedToSneakInSomeGenericOrParameterizedTypePatternMatchingStuffAnywhere ...

  5. python 将字节字符串转换成十六进制字符串

    想将一个十六进制字符串解码成一个字节字符串或者将一个字节字符串编码成一个十六进制字符串 1)只是简单的解码或编码一个十六进制的原始字符串,可以使用 binascii模块 >>> s ...

  6. hibernate二级缓存ehcache hibernate配置详解

    <!-----------------hibernate二级缓存ehcache------------------------->hibernate配置 <prop key=&quo ...

  7. webStorm 2018 激活

    原文地址 https://blog.csdn.net/jiangxinyu50/article/details/79104016 webStorm 2018 激活 今天早上一更新webStorm,之前 ...

  8. POJ 1182 食物链 (种类并查集)

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...

  9. 大数据学习路线之linux系统基础搭建

    学习大数据是必须掌握一定Linux知识的,工欲善其事,必先利其器.在学习之前,首先需要搭建Linux系统,本节将讲解VMware Workstation的安装和CentOS 7系统的安装. 1.2.1 ...

  10. ELK学习笔记之F5利用ELK进行应用数据挖掘系列(1)-HTTP

    0x00 概述 F5 BIGIP从应用角度位于网络结构的关键咽喉位置,可获取所有应用的流量,针对流量执行L7层处理,即便是TLS加密的流量也可以通过F5进行SSL offload.通过F5可以统一获取 ...