题意

给出字符串的长度 \(n\) ,以及该字符串是由哪些小写字母组成,现给出一个坏串 \(S\) ,求存在多少种不同的字符串,使得其子串不含坏串。

\(1 \leq n \leq 10^9\)

\(1 \leq |S| \leq 50\)

思路

矩阵快速幂优化 \(\text{dp}\) 是真的常见,在同层状态数不多,但层数很多的时候,要考虑矩阵快速幂优化 \(\text{dp}\) 。

每一层的状态 \(dp[i]\) 表示匹配到哪里,再枚举给定的字母进行转移,只要不匹配到 \(S\) 结尾都是一个合法的转移,转移系数为 \(1\) 。剩下就是板子了。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
typedef unsigned int uint;
using namespace std;
const int N=53;
struct Matrix
{
int n,m;uint a[N][N];
uint *operator [](const int x){return a[x];}
void resize(int _n,int _m){n=_n,m=_m;}
Matrix operator *(const Matrix &_)const
{
Matrix res;res.resize(n,_.m);
FOR(i,1,n)FOR(j,1,_.m)
{
res[i][j]=0;
FOR(k,1,m)res[i][j]+=a[i][k]*_.a[k][j];
}
return res;
}
Matrix operator *=(const Matrix &_){return (*this)=(*this)*_;}
}A,B;
char d_c[30],str[N];
int c_d[256];
int f[N],F[N][30];
int n,m,l; Matrix Pow(Matrix a,int p)
{
Matrix res;res.resize(a.n,a.n);
FOR(i,1,res.n)FOR(j,1,res.n)res[i][j]=(i==j);
for(;p>0;p>>=1,a*=a)if(p&1)res*=a;
return res;
} int main()
{
int Case;
scanf("%d",&Case);
FOR(cas,1,Case)
{
scanf("%d",&n);
scanf("%s",d_c+1);
scanf("%s",str+1);
l=strlen(d_c+1);
m=strlen(str+1);
FOR(i,1,l)c_d[(int)d_c[i]]=i; f[1]=f[2]=1;FOR(i,1,l)F[1][i]=1+(i==c_d[(int)str[1]]);
FOR(i,2,m)
{
f[i+1]=F[f[i]][c_d[(int)str[i]]];
FOR(j,1,l)
{
if(c_d[(int)str[i]]==j)F[i][j]=i+1;
else F[i][j]=F[f[i]][j];
}
} A.resize(1,m),B.resize(m,m);
FOR(i,1,m)A[1][i]=0;
FOR(i,1,m)FOR(j,1,m)B[i][j]=0; A[1][1]=1;
FOR(i,1,m)FOR(j,1,l)if(F[i][j]<=m)B[i][F[i][j]]++;
A*=Pow(B,n);
uint ans=0;
FOR(i,1,m)ans+=A[1][i]; printf("Case %d: %u\n",cas,ans);
}
return 0;
}

LightOJ 1268 Unlucky Strings(KMP+矩阵乘法+基础DP)的更多相关文章

  1. LightOJ 1268 Unlucky Strings (KMP+矩阵快速幂)

    题意:给出一个字符集和一个字符串和正整数n,问由给定字符集组成的所有长度为n的串中不以给定字符串为连续子串的有多少个? 析:n 实在是太大了,如果小的话,就可以用动态规划做了,所以只能用矩阵快速幂来做 ...

  2. P3193 [HNOI2008]GT考试(KMP+矩阵乘法加速dp)

    P3193 [HNOI2008]GT考试 思路: 设\(dp(i,j)\)为\(N\)位数从高到低第\(i\)位时,不吉利数字在第\(j\)位时的情况总数,那么转移方程就为: \[dp(i,j)=dp ...

  3. bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...

  4. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  5. 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

    题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...

  6. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  7. HNOI2008 GT考试 (KMP + 矩阵乘法)

    传送门 这道题目的题意描述,通俗一点说就是这样:有一个长度为n的数字串(其中每一位都可以是0到9之间任意一个数字),给定一个长度为m的模式串,求有多少种情况,使得此模式串不为数字串的任意一个子串.结果 ...

  8. BZOJ_1009_[HNOI2008]_GT考试_(动态规划+kmp+矩阵乘法优化+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串全部由0~9组成,给出一个串s,求一个长度为n的串,不包含s的种类有多少. 分析 ...

  9. [bzoj1009][HNOI2008]GT考试——KMP+矩阵乘法

    Brief Description 给定一个长度为m的禁止字符串,求出长度为n的字符串的个数,满足: 这个字符串的任何一个字串都不等于给定字符串. 本题是POJ3691的弱化版本. Algorithm ...

随机推荐

  1. CS131&Cousera图像处理学习笔记 - L5边缘

    cs131: http://vision.stanford.edu/teaching/cs131_fall1617/ coursera: https://www.coursera.org/learn/ ...

  2. Spring cglib 初始化 ExceptionInInitializerError,new Enhancer() 异常

    解决办法:更换 spring-cglib-repack-*.*.jar 包 java.lang.ExceptionInInitializerError at org.springframework.a ...

  3. Nginx配置基础-location

    location表达式类型 ~ 表示执行一个正则匹配,区分大小写~* 表示执行一个正则匹配,不区分大小写^~ 表示普通字符匹配.使用前缀匹配.如果匹配成功,则不再匹配其他location.= 进行普通 ...

  4. python 安装pandas

    1.pandas有啥用 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pand ...

  5. Spring 知识点提炼-转

    https://www.cnblogs.com/baizhanshi/p/7717563.html 1. Spring框架的作用 轻量:Spring是轻量级的,基本的版本大小为2MB 控制反转:Spr ...

  6. 接口作为方法的参数或返回值——List接口

    接口作为方法的参数或返回值,源码可知,List为一个接口,ArraryList是的它的实现类: 其中,addNames方法中,入参和返回值都List接口,入参是多态的,编译看左,运行看右(访问成员方法 ...

  7. PHP 取302跳转后真实 URL 的两种方法

    1 . 第一种,CURL形式[感觉处理略慢,代码偏多] $url = '将跳转的URL'; $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $url) ...

  8. centos6.8卸载DB2 10.5

    1.卸载实例 Ø  使用Root用户登陆 cd /opt/ibm/db2/V9.5/instance/ ./db2idrop db2inst1 ./dasdrop db2inst1 2.卸载db2 Ø ...

  9. jumpserver堡垒机安装

    1. 下载jumpserver cd /opt wget https://github.com/jumpserver/jumpserver/archive/master.zip unzip maste ...

  10. windows无法远程连接linux

    网络模式 修改对应的NAT模式,子网地址的前三位要与window,internet协议版本里的IP地址的前三位一致.