题解——loj6279 数列分块入门3 (分块)
用set维护有序序列
或许sort也可以,但这题的前驱定义是严格小于
所以要去重
然后就是记得自己打的加法tag在query的时候一定要算上
话说这题数据有点fake啊忘了查询算上自己的标记了还有70
然后还有玄学优化
块的大小从\( \sqrt x \)变成1000每个点能快300ms的样子qwq
似乎原理是减少维护的set的个数吧
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <set>
#include <cmath>
using namespace std;
const int MAXN = 101000;
int n,sz,num,tag[MAXN],a[MAXN],belong[MAXN];
set<int> b[105];
void calbe(int n){
for(int i=1;i<=n;i++)
belong[i]=(i-1)/sz+1;
}
void reset(int x){
b[x].clear();
for(int i=(x-1)*sz+1;i<=min(x*sz,n);i++)
b[x].insert(a[i]);
}
void update(int l,int r,int w){
int xl=belong[l];
int xr=belong[r];
for(int i=l;i<=min(xl*sz,r);i++){
b[xl].erase(a[i]);
a[i]+=w;
b[xl].insert(a[i]);
}
if(xl!=xr){
for(int i=(xr-1)*sz+1;i<=r;i++){
b[xr].erase(a[i]);
a[i]+=w;
b[xr].insert(a[i]);
}
}
for(int i=xl+1;i<=xr-1;i++)
tag[i]+=w;
}
int query(int l,int r,int w){
int xl=belong[l];
int xr=belong[r];
int ans=-1;
for(int i=l;i<=min(r,xl*sz);i++)
if(a[i]<w-tag[xl]&&a[i]+tag[xl]>ans)
ans=a[i]+tag[xl];
if(xl!=xr){
for(int i=(xr-1)*sz+1;i<=r;i++)
if(a[i]<w-tag[xr]&&a[i]+tag[xr]>ans)
ans=a[i]+tag[xr];
}
for(int i=xl+1;i<=xr-1;i++){
set<int> :: iterator it=b[i].lower_bound(w-tag[i]);
if(it==b[i].begin())
continue;
it--;
if(ans<(*it+tag[i]))
ans=*it+tag[i];
}
return ans;
}
int main(){
scanf("%d",&n);
sz=1000;
calbe(n);
num=n/sz;
if(n%sz)
num++;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=num;i++){
reset(i);
}
for(int i=1;i<=n;i++){
int opt,l,r,c;
scanf("%d %d %d %d",&opt,&l,&r,&c);
if(opt==0)
update(l,r,c);
else
printf("%d\n",query(l,r,c));
}
return 0;
}
题解——loj6279 数列分块入门3 (分块)的更多相关文章
- LibreOJ 6277 数列分块入门 1(分块)
题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
- LibreOJ 6278 数列分块入门 2(分块)
题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...
- [Libre 6281] 数列分块入门 5 (分块)
水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...
- LOJ.6284.数列分块入门8(分块)
题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...
- LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)
题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...
- LibreOJ 6279 数列分块入门 3(分块+排序)
题解:自然是先分一波块,把同一个块中的所有数字压到一个vector中,将每一个vector进行排序.然后对于每一次区间加,不完整的块加好后暴力重构,完整的块直接修改标记.查询时不完整的块暴力找最接近x ...
- LOJ.6281.数列分块入门5(分块 区间开方)
题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...
- [Libre 6282] 数列分块入门 6 (分块)
原题:传送门 code: //By Menteur_Hxy #include<cstdio> #include<iostream> #include<algorithm& ...
随机推荐
- aic bic mdl
https://blog.csdn.net/xianlingmao/article/details/7891277 https://blog.csdn.net/lfdanding/article/de ...
- OpenCV学习笔记(一) - 边界填充、Rect函数
边界填充: c++实现,测试在mac pro里,输入720p时间0.4ms: cv::copyMakeBorder(image, dst, , , , , cv::BORDER_REPLICATE); ...
- 20165305 苏振龙《Java程序设计》第四周学习总结
第五章 继承: 面向对象中,为避免多个类间重复定义共同行为.(简单说就是将相同的程序代码提升为父类.) 特点: 这里接触到了新的关键词,extends,在java语言中用estends来继承父类的行为 ...
- 使用AJAX技术发送异步请求,HTTP服务端推送
使用AJAX技术发送异步请求 什么是AJAX AJAX指一步Javascript和XML(Asynchronous JavaScript And XML),它是一些列技术的组合,简单来说AJAX基于X ...
- Linux服务器---流量监控ntop
Ntop Ntop 是一款类似于sniffer的流量监控工具,它显示出的流量信息比mrtg更加详细. 1 .安装一些依赖软件 [root@localhost bandwidthd]# yum ins ...
- 转:【专题十二】实现一个简单的FTP服务器
引言: 休息一个国庆节后好久没有更新文章了,主要是刚开始休息完心态还没有调整过来的, 现在差不多进入状态了, 所以继续和大家分享下网络编程的知识,在本专题中将和大家分享如何自己实现一个简单的FTP服务 ...
- 实现私有化(Pimpl) --- QT常见的设计模式
转载自:http://blog.sina.com.cn/s/blog_667102dd0100wxbi.html 一.遇到的问题 1.隐藏实现 我们在给客户端提供接口的时候只希望能暴露它的接口,而隐藏 ...
- 018.07 New BMW ICOM A3+B+C+D Plus EVG7 Controller Tablet PC with WIFI Function
2018.07 New BMW ICOM A3+B+C+D Plus EVG7 Controller Tablet PC with WIFI Function Software Version : ...
- Django后端项目---- Rest Framework(2)
一.认证(补充的一个点) 认证请求头 #!/usr/bin/env python # -*- coding:utf-8 -*- from rest_framework.views import API ...
- puts函数
1.puts函数是gets函数的输出版本,它把指定的字符串写到标准输出并在末尾添加一个换行符 #include <stdio.h> #include <stdlib.h> in ...