用set维护有序序列

或许sort也可以,但这题的前驱定义是严格小于

所以要去重

然后就是记得自己打的加法tag在query的时候一定要算上

话说这题数据有点fake啊忘了查询算上自己的标记了还有70

然后还有玄学优化

块的大小从\( \sqrt x \)变成1000每个点能快300ms的样子qwq

似乎原理是减少维护的set的个数吧

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <set>
#include <cmath>
using namespace std;
const int MAXN = 101000;
int n,sz,num,tag[MAXN],a[MAXN],belong[MAXN];
set<int> b[105];
void calbe(int n){
for(int i=1;i<=n;i++)
belong[i]=(i-1)/sz+1;
}
void reset(int x){
b[x].clear();
for(int i=(x-1)*sz+1;i<=min(x*sz,n);i++)
b[x].insert(a[i]);
}
void update(int l,int r,int w){
int xl=belong[l];
int xr=belong[r];
for(int i=l;i<=min(xl*sz,r);i++){
b[xl].erase(a[i]);
a[i]+=w;
b[xl].insert(a[i]);
}
if(xl!=xr){
for(int i=(xr-1)*sz+1;i<=r;i++){
b[xr].erase(a[i]);
a[i]+=w;
b[xr].insert(a[i]);
}
}
for(int i=xl+1;i<=xr-1;i++)
tag[i]+=w;
}
int query(int l,int r,int w){
int xl=belong[l];
int xr=belong[r];
int ans=-1;
for(int i=l;i<=min(r,xl*sz);i++)
if(a[i]<w-tag[xl]&&a[i]+tag[xl]>ans)
ans=a[i]+tag[xl];
if(xl!=xr){
for(int i=(xr-1)*sz+1;i<=r;i++)
if(a[i]<w-tag[xr]&&a[i]+tag[xr]>ans)
ans=a[i]+tag[xr];
}
for(int i=xl+1;i<=xr-1;i++){
set<int> :: iterator it=b[i].lower_bound(w-tag[i]);
if(it==b[i].begin())
continue;
it--;
if(ans<(*it+tag[i]))
ans=*it+tag[i];
}
return ans;
}
int main(){
scanf("%d",&n);
sz=1000;
calbe(n);
num=n/sz;
if(n%sz)
num++;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=num;i++){
reset(i);
}
for(int i=1;i<=n;i++){
int opt,l,r,c;
scanf("%d %d %d %d",&opt,&l,&r,&c);
if(opt==0)
update(l,r,c);
else
printf("%d\n",query(l,r,c));
}
return 0;
}

题解——loj6279 数列分块入门3 (分块)的更多相关文章

  1. LibreOJ 6277 数列分块入门 1(分块)

    题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...

  2. LibreOJ 6280 数列分块入门 4(分块区间加区间求和)

    题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...

  3. LibreOJ 6278 数列分块入门 2(分块)

     题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...

  4. [Libre 6281] 数列分块入门 5 (分块)

    水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...

  5. LOJ.6284.数列分块入门8(分块)

    题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...

  6. LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)

    题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...

  7. LibreOJ 6279 数列分块入门 3(分块+排序)

    题解:自然是先分一波块,把同一个块中的所有数字压到一个vector中,将每一个vector进行排序.然后对于每一次区间加,不完整的块加好后暴力重构,完整的块直接修改标记.查询时不完整的块暴力找最接近x ...

  8. LOJ.6281.数列分块入门5(分块 区间开方)

    题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...

  9. [Libre 6282] 数列分块入门 6 (分块)

    原题:传送门 code: //By Menteur_Hxy #include<cstdio> #include<iostream> #include<algorithm& ...

随机推荐

  1. 20155228 2017-5-31 课堂测试:编写MyOD.java

    20155228 2017-5-31 课堂测试:编写MyOD.java 题目和要求 编写MyOD.java:用java MyOD XXX实现Linux下od -tx -tc XXX的功能 提交测试代码 ...

  2. GO富集分析

    GO的主要用途之一是对基因组进行富集分析.例如,给定一组在特定条件下上调的基因,富集分析将使用该基因组的注释发现哪些GO术语被过度表示(或未充分表示). 富集分析工具    用户可以直接从GOC网站的 ...

  3. PHP HTML混写,PHP中把大块HTML文本直接赋值给字符串变量的方法

    PHP HTML混写,PHP中把大块HTML文本直接赋值给字符串变量的方法 使用HEREDOC/NOWDOCHEREDOC和NOWDOC是PHP5.3开始支持的一种新特性,它允许在程序中使用一种自定义 ...

  4. byte & 0xff char 转换

    https://blog.csdn.net/lixingtao0520/article/details/75450883 版权声明:本文为博主原创文章,转载请注明作者与出处,http://blog.c ...

  5. MyBatis中的if写法

    <if test="latn_id !=null and latn_id !='' and latn_id !='100'"> and latnid=#{latn_id ...

  6. 自写Jquery插件 Datagrid

    原创文章,转载请注明出处,谢谢!https://www.cnblogs.com/GaoAnLee/p/9086582.html 废话不多说,先上个整体效果: html <div id='data ...

  7. 纯干货:深度学习实现之空间变换网络-part2

    https://www.jianshu.com/p/854d111670b6 纯干货:深度学习实现之空间变换网络-part1 在第一部分中,我们主要介绍了两个非常重要的概念:仿射变换和双线性插值,并了 ...

  8. eclipse 出现内存溢出问题解决办法

    1.eclipse.ini添加设置: -vm#eclipse启动使用的jdk设置,路径根据自己实际路径修改 C:/Program Files/Java/jdk1.6.0_45/bin/javaw.ex ...

  9. Web开发相关笔记 #04# WebSocket

    本文的主要内容: HTTP VS. WebSocket WebSocket 的客户端实现(JavaScript) WebSocket 的服务端实现(Java & apache WebSocke ...

  10. Docker学习笔记之保存和共享镜像

    0x00 概述 让 Docker 引以为傲的是它能够实现相比于其他虚拟化软件更快的环境迁移和部署,在这件事情上,轻量级的容器和镜像结构的设计无疑发挥了巨大的作用.通过将容器打包成镜像,再利用体积远小于 ...