HDU1211 密文解锁 【扩展欧几里得】【逆元】
<题目链接>
<转载于 >>> >
题目大意:
RSA是个很强大的加密数据的工具,对RSA系统的描述如下:
选择两个大素数p、q,计算n = p * q,F(n) = (p-1)*(q-1),选择一个整数e,使得gcd(e,F(n)) = 1,
e是公匙,计算d使得d * e mod F(n) = 1 mod F(n),d是私匙。加密数据的方法为
C = E(m) = m^e mod n
解密数据的方法为
M = D(c) = c^d mod n
其中,c是密文中字母的ASCII的值;m是明文中字母的ASCII的值。
现在问题来了,给你p、q、e和一些密文,请把密文翻译成明文。
解题分析:
根据p和q,计算出n = p * q,F(n) = (p-1)*(q-1),用扩展欧几里得方法求出e关于F(n)的逆元d,根据
公式 M= c^d mod n,解出明文。
#include <cstdio> #define ll long long ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (!b)
{
x = ; y = ;
return a;
}
ll R = exgcd(b, a%b, y, x);
y -= a / b * x;
return R;
} ll pow(ll a, ll b,ll mod)
{
ll ans = ;
while (b)
{
if (b & )
{
ans = (ans*a) % mod;
}
b >>= ;
a = (a*a) % mod; }
return ans;
} int main()
{
ll q, p, e, l;
while (scanf("%lld %lld %lld %lld", &p, &q, &e, &l) != EOF)
{
ll n = q * p;
ll fn = (q-)*(p-); ll d, y;
ll gcd=exgcd(e, fn, d, y); d = (d%fn + fn) % fn; //用扩展欧几里得方法求出e关于F(n)的逆元d for (ll i = ; i < l; i++)
{
ll cal; scanf("%lld", &cal); ll ans = pow(cal, d,n);
printf("%c", ans%); //注意,这里是 %128
}
printf("\n");
}
return ;
}
2018-08-12
HDU1211 密文解锁 【扩展欧几里得】【逆元】的更多相关文章
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- Codeforces7C 扩展欧几里得
Line Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit Status ...
随机推荐
- 寻路优化(二)——二维地图上theta*算法的设计探索
这篇文章是基于上一篇文章的研究上进行的,使得路径更加的平滑和自然,特此记录.有错误欢迎大家批评指正.如需转载请注明出处,http://www.cnblogs.com/Leonhard-/p/68660 ...
- 信息收集之censys
一.摘要 Censys提供了search.view.report.query.export以及data六种API接口. search接口的请求地址是https://www.censys.io/api/ ...
- Android 常用 adb 命令总结【转】
原文链接 针对移动端 Android 的测试, adb 命令是很重要的一个点,必须将常用的 adb 命令熟记于心, 将会为 Android 测试带来很大的方便,其中很多命令将会用于自动化测试的脚本当中 ...
- 在iOS 开发中用GDataXML(DOM方式)解析xml文件
因为GDataXML的内部实现是通过DOM方式解析的,而在iOS 开发中用DOM方式解析xml文件,这个时候我们需要开启DOM,因为ios 开发中是不会自动开启的,只有在mac 开发中才自动开启的.我 ...
- 允许远程用户登录访问mysql的方法
需要手动增加可以远程访问数据库的用户. 方法一.本地登入mysql,更改 "mysql" 数据库里的 "user" 表里的 "host" 项 ...
- 福利爬虫妹子图之获取种子url
import os import uuid from lxml import html import aiofiles import logging from ruia import Spider, ...
- 利用autocomplete.js实现仿百度搜索效果(ajax动态获取后端[C#]数据)
实现功能描述: 1.实现搜索框的智能提示 2.第二次浏览器缓存结果 3.实现仿百度搜索 <!DOCTYPE html> <html xmlns="http://www.w3 ...
- [转]VS2015 Git 源码管理工具简单入门
VS2015 Git 源码管理工具简单入门 1.VS Git插件 1.1 环境 VS2015+GitLab 1.2 Git操作过程图解 1.3 常见名词解释 拉取(Pull):将远程版本库合并到本 ...
- 重装windows系统后配置Anaconda
给电脑换了系统,十分担心anaconda需要重装.还好以下方法完美解决.(同是win10 64位) 原始anaconda安装路径:D:\ProgramData\Anaconda3 (不能有空格哦) ...
- Python-GIL 进程池 线程池
5.GIL vs 互斥锁(*****) 1.什么是GIL(Global Interpreter Lock) GIL是全局解释器锁,是加到解释器身上的,保护的就是解释器级别的数据 (比如垃圾回收的数据) ...