题目链接

题目因为要根据上一次的输出结果来判断这次的输入,也就是要求我们强制在线,不能够把输入全部储存后处理

如果不要求强制在线,我们可以先把所以输入储存起来,从最后开始处理,把删边改成加边,如果在加边前不连通,加边后连通,也就等价意味着删边后会不连通,再把输出储存起来,最后从头到尾输出

既然强制在线,我们可以换个思路

这里引进对偶图的概念:

对偶图是由平面图变来的,平面图的概念就是:图画在平面上,边的交点只能为结点的图。对偶图就是把边圈起来的一个个“网格”看作结点形成的图。就网格图而言,网格图里原来交叉点当作一个结点,对偶图里就是把白块当作一个结点。

我们可以看出,当把网格图的一条边删掉之后,就等价于把边两边的白块联通了,换句话说,就是把对偶图里的两个结点联通了

有了以上前介知识后进一步分析,删边后图不再联通就说明该边是唯一连接两点的路径了,也就是说在对偶图中,在加边前对偶图里的两个白块已经联通了

因为当删除一条边时发现这条边连接的两个空块已经联通了,那么删除这条边后会出现一个空块连成的环,于是就把里面的点和外面的点给隔开了。

如果还有不明白的可以看看这篇题解

转换成对偶图后就可以直接用并查集处理了

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double pi=acos(-);
const int mod=<<;
const int maxn=;
int par[maxn];
int rnk[maxn];
bool flag=;
int n,k;
void init(){
for(int i=;i<maxn;i++) par[i]=i,rnk[i]=;
}
int find(int x){
if(par[x]==x){
return x;
}
else{
return par[x]=find(par[x]);
}
//return par[x] == x ? x : (par[x] = find(par[x]));
}
void unite(int x,int y){
x=find(x);y=find(y);
if(x==y) return ;
if(rnk[x]<rnk[y]){
par[x]=y;
}else {
par[y]=x;
if(rnk[x]==rnk[y]) rnk[x]++;
}
}
bool same(int x,int y){
return find(x)==find(y);
}
void solve(int a,int b,char c){
//cout<<flag<<" ";
// cout<<a<<" "<<b<<" "<<c<<endl;
int x,y;
if(c=='N'){
// cout<<233<<endl;
if(a==){
x=,y=b;
}
else if(a==n){
x=,y=(n-)*(n-)+b;
}
else{
x=(a-)*(n-)+b,y=(a-)*(n-)+b;
}
}
else if(c=='E'){
// cout<<233<<endl;
if(b==){
x=,y=(a-)*(n-)+;
}
else if(b==n){
x=,y=a*(n-);
}
else {
x=(a-)*(n-)+b-,y=(a-)*(n-)+b;
}
}
// cout<<x<<" "<<y<<endl;
if(same(x,y)){
cout<<"NIE\n";flag=;
return ;
}
cout<<"TAK\n";flag=;
unite(x,y);
}
int main(){
init();
scanf("%d%d",&n,&k);
while(k--){
int a1,a2,b1,b2,c1,c2;
scanf("%d %d %c",&a1,&b1,&c1);
getchar();
scanf("%d %d %c",&a2,&b2,&c2);
getchar();
//cout<<par[2]<<" "<<par[0]<<endl;
if(flag) solve(a2,b2,c2);
else solve(a1,b1,c1);
}
return ;
}

对偶图 并查集 BZOJ4423的更多相关文章

  1. 【bzoj5183】[Baltic2016]Park 离线+对偶图+并查集

    题目描述 在Byteland的首都,有一个矩形围栏围起来的公园.在这个公园里树和访客都以一个圆形表示.公园有四个出入口,每个角落一个(1=左下角,2=右下角,3=右上角,4=左上角).访客能通过这些出 ...

  2. 【bzoj3007】拯救小云公主 二分+对偶图+并查集

    题目描述 英雄又即将踏上拯救公主的道路…… 这次的拯救目标是——爱和正义的小云公主. 英雄来到boss的洞穴门口,他一下子就懵了,因为面前不只是一只boss,而是上千只boss.当英雄意识到自己还是等 ...

  3. BZOJ_4423_[AMPPZ2013]Bytehattan_对偶图+并查集

    BZOJ_4423_[AMPPZ2013]Bytehattan_对偶图+并查集 Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的. 有k次操作,每次会删掉图中的 ...

  4. 【BZOJ4423】[AMPPZ2013]Bytehattan 对偶图+并查集

    [BZOJ4423][AMPPZ2013]Bytehattan Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v), ...

  5. [BZOJ4423][AMPPZ2013]Bytehattan(对偶图+并查集)

    建出对偶图,删除一条边时将两边的格子连边.一条边两端连通当且仅当两边的格子不连通,直接并查集处理即可. #include<cstdio> #include<algorithm> ...

  6. 【bzoj4423】[AMPPZ2013]Bytehattan(平面图转对偶图+并查集)

    题目传送门:bzoj4423 如果是普通的删边判连通性,我们可以很显然的想到把操作离线下来,倒着加边.然而,这题强 制 在 线. 虽然如此,但是题目所给的图是个平面图.那么我们把它转成对偶图试试看? ...

  7. BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集

    Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...

  8. BZOJ 3007 [SDOI2012]拯救小云公主 - 对偶图 + 并查集

    Solution 答案具有单调性, 显然可以二分答案. 有两个注意点 : 英雄是可以随便走的, 也就是不是网格图... 还有坐标不能小于$1$ QAQ 开始时英雄在左下角, 公主在右上角, 我们反过来 ...

  9. 【BZOJ-4423】Bytehattan 并查集 + 平面图转对偶图

    4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 144  Solved: 103[Submit][ ...

随机推荐

  1. 数论+矩阵快速幂|斐波那契|2014年蓝桥杯A组9-fishers

    标题:斐波那契 斐波那契数列大家都非常熟悉.它的定义是: f(x) = 1 .... (x=1,2) f(x) = f(x-1) + f(x-2) .... (x>2) 对于给定的整数 n 和 ...

  2. FJNU2018低程F jq解救fuls (贪心乱搞)题解

    题目描述 一天fuls被邪恶的"咕咕咕"抓走了,jq为了救fuls可谓是赴汤蹈火,费了九牛二虎之力才找到了"咕咕咕"关押fuls的地方. fuls被关在一个机关 ...

  3. (转)开源项目miaosha(上)

    石墨文档:https://shimo.im/docs/iTDoZs4CVfICgSfV/ (二期)19.开源秒杀项目miaosha解读(上) [课程19]几张图.xmind0.6MB [课程19]开源 ...

  4. 360搜索引擎取真实地址-python代码

    还是个比较简单的,不像百度有加密算法 分析 http://www.so.com/link?url=http%3A%2F%2Fedu.sd.chinamobile.com%2Findex%2Fnews. ...

  5. Run tomcat on port 80 not 8080

    How to run Tomcat on Port 80 A standard Tomcat installation starts the webserver on port 8080 – whic ...

  6. Could not stop Cortex-M device! please check the JTAG cable的解决办法

      今天程序烧录后,进行调试时keil提示:Could not stop Cortex-M device!  please check the JTAG cable   如图: 于是我在网上搜了一下, ...

  7. Bytom猜谜合约使用指南

    准备工作: 1.安装全节点钱包V1.0.5以上并同步完成: 2.已经发行一种资产,发行资产的方法具体见文章<如何在Bytom上发布资产?> 3.准备好一些BTM作为手续费: 设置谜语(锁定 ...

  8. 常用Iview样式布局

    type 布局模式,可选值为flex流式布局或不选,在现代浏览器下有效 flex 布局下的垂直对齐方式,align可选值为top.middle.bottom flex 布局下的水平排列方式,justi ...

  9. 【Net Core】DNX概述

    1. 什么是.NET执行环境 ? .NET Execution Environment(DNX) 是一个SDK 和运行时环境,它包含所有的你需要创建和运行.net应用程序的组件.它提供一个主机进程,C ...

  10. 解决 Boost安装:fatal error: bzlib.h: No such file or directory 问题

    参考: How to install all the boost development libraries? 解决 Boost安装:fatal error: bzlib.h: No such fil ...