pyhanlp 文本聚类详细介绍
文本聚类
文本聚类简单点的来说就是将文本视作一个样本,在其上面进行聚类操作。但是与我们机器学习中常用的聚类操作不同之处在于。
我们的聚类对象不是直接的文本本身,而是文本提取出来的特征。因此如何提取特征因而是非常重要的一步。在HanLP中一共有三个文本聚类方法。前两种都基于词袋模式,第一个是最常见的聚类算法:k-means,但HanLP不光实现了k-means,还实现了速度更快效果更好的repeated bisection算法(重复二分法,还是翻译为累次平方法,好像是第一种)。笔者动笔前段时间刚刚添加了一个新的聚类分析器是,基于词向量的kmens聚类分析器。
基于词向量的kmeans聚类分析器,输入的需要时词向量化后的文件。虽然HanLP的词向量在Java实现中,还算可以,但在Python中使用不算太好用,同时Python也不推荐用HanLP做词向量,我们有更好的工具。所以这里我们也就不画蛇添足了。
而对于前两个聚类分析器而言,其聚类模块可以接受任意文本作为文档,而不需要用特殊分隔符隔开单词。另外,该模块还接受单词列表作为输入,用户可以将英文、日文等预先切分为单词列表后输入本模块。统计方法适用于所有语种,不必拘泥于中文。
分词器的性能问题
在repeated bisection算法无论性能还是速度都要优于kmens,但是在本人的测试中,前者速度基本原作者一致约为kmeans的三倍左右,但是性能略低于后者。此处请读者自行斟酌。
分词器的参数
自动判断聚类个数k(此处来自于原文:HanLP中的文本聚类
很多时候用户可能觉得聚类个数k这个超参数很难准确指定。在repeated bisection算法中,有一种变通的方法,那就是通过给准则函数的增幅设定阈值beta来自动判断k。此时算法的停机条件为,当一个簇的二分增幅小于beta时不再对该簇进行划分,即认为这个簇已经达到最终状态,不可再分;当所有簇都不可再分时,算法终止,此时产生的聚类数量就不再需要人工指定了。
在HanLP中,repeated bisection算法提供了3种接口,分别需要指定k、beta或两者同时指定。当同时指定k和beta时,满足两者的停止条件中任意一个算法都会停止。当只指定一个时,另一个停止条件不起作用。这三个接口列举如下:
public List<Set<K>> repeatedBisection(int nclusters)
public List<Set<K>> repeatedBisection(double limit_eval)
public List<Set<K>> repeatedBisection(int nclusters, double limit_eval)
当我们使用analyzer.repeatedBisection(1.0)时,可以进行自动聚类。
from pyhanlp import *
ClusterAnalyzer = SafeJClass('com.hankcs.hanlp.mining.cluster.ClusterAnalyzer')
analyzer = ClusterAnalyzer()
# 我们需要调用并返回自身
analyzer.addDocument("赵一", "流行, 流行, 流行, 流行, 流行, 流行, 流行, 流行, 流行, 流行, 蓝调, 蓝调, 蓝调, 蓝调, 蓝调, 蓝调, 摇滚, 摇滚, 摇滚, 摇滚");
analyzer.addDocument("钱二", "爵士, 爵士, 爵士, 爵士, 爵士, 爵士, 爵士, 爵士, 舞曲, 舞曲, 舞曲, 舞曲, 舞曲, 舞曲, 舞曲, 舞曲, 舞曲");
analyzer.addDocument("张三", "古典, 古典, 古典, 古典, 民谣, 民谣, 民谣, 民谣");
analyzer.addDocument("李四", "爵士, 爵士, 爵士, 爵士, 爵士, 爵士, 爵士, 爵士, 爵士, 金属, 金属, 舞曲, 舞曲, 舞曲, 舞曲, 舞曲, 舞曲");
analyzer.addDocument("王五", "流行, 流行, 流行, 流行, 摇滚, 摇滚, 摇滚, 嘻哈, 嘻哈, 嘻哈");
analyzer.addDocument("马六", "古典, 古典, 古典, 古典, 古典, 古典, 古典, 古典, 摇滚");
print(analyzer.repeatedBisection(1.0))
[[李四, 钱二], [王五, 赵一], [张三, 马六]]
评测
评测程序仍然使用搜狗文本分类语料库迷你版。过程为首先遍历子目录读取文档,以子目录+文件名作为id将文档传入聚类分析器进行聚类,并且计算F1值返回。该计算过程已被原作者封装为接口,我们可以直接调用
CORPUS_FOLDER = "/home/fonttian/Data/CNLP/textClassification/sogou-mini/搜狗文本分类语料库迷你版"
for i in ["kmeans", "repeated bisection"]:
print(i, ClusterAnalyzer.evaluate(CORPUS_FOLDER, i) * 100)
kmeans 83.97065954968313
repeated bisection 82.71523522720585
文章来源FontTian的博客
pyhanlp 文本聚类详细介绍的更多相关文章
- [转]python进行中文文本聚类(切词以及Kmeans聚类)
简介 查看百度搜索中文文本聚类我失望的发现,网上竟然没有一个完整的关于Python实现的中文文本聚类(乃至搜索关键词python 中文文本聚类也是如此),网上大部分是关于文本聚类的Kmeans聚类的原 ...
- 文本挖掘之文本聚类(MapReduce)
刘 勇 Email:lyssym@sina.com 简介 针对大数量的文本数据,采用单线程处理时,一方面消耗较长处理时间,另一方面对大量数据的I/O操作也会消耗较长处理时间,同时对内存空间的消耗也是 ...
- 10.HanLP实现k均值--文本聚类
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 10. 文本聚类 正所谓物以类聚,人以群分.人们在获取数据时需要整理,将相似的数据 ...
- K-means算法及文本聚类实践
K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定 ...
- web.xml 详细介绍(转)
web.xml 详细介绍 1.启动一个WEB项目的时候,WEB容器会去读取它的配置文件web.xml,读取<listener>和<context-param>两个结点. 2.紧 ...
- Android manifest之manifest标签详细介绍
AndroidManifest详细介绍 本文主要对AndroidManifest.xml文件中各个标签进行说明.索引如下: 概要PART--01 manifest标签PART--02 安全机制和per ...
- html <input>标签类型属性type(file、text、radio、hidden等)详细介绍
html <input>标签类型属性type(file.text.radio.hidden等)详细介绍 转载请注明:文章转载自:[169IT-最新最全的IT资讯] html <inp ...
- JQuery中的AJAX参数详细介绍
Jquery中AJAX参数详细介绍 参数名 类型 描述 url String (默认: 当前页地址) 发送请求的地址. type String (默认: "GET") 请求方 ...
- ios开发——实用技术篇&Pist转模型详细介绍
Pist转模型详细介绍 关于Plist转模型在iOS开发中是非常常见的,每开一一个项目或者实现一个功能都要用到它,所以今天就给大家讲讲Plist怎么转成模型数据, 前提:必须有一个Plist文件或者通 ...
随机推荐
- Python 数据共享
import time from multiprocessing import Process,Manager,Lock # a = 10 # # tmp = a # # tmp -= 1 # # a ...
- 使用pyspider爬取巨量淘宝MM图片
具体搭建步骤不再赘述,这里主要使用到了fakeagent,phantomjs和proxy pyspider的爬取相当智能,在不能获取图片的时候会适当的暂停一段时间再试探性的爬取,配合fakeagent ...
- 【opencv基础】imwrite函数与图像存储质量
前言 std::vector<int> compression_params; compression_params.push_back(CV_IMWRITE_JPEG_QUALITY); ...
- 【leetcode】9-PalindromeNumber
problem Palindrome Number 回文数字: 什么是回文数字? 要求不能使用字符串: 翻转一半的数字: 如何判断数字到一半啦? 参考 1.leetcode-problem: 完
- HDU - 1174:爆头 (三维平面点到射线的距离)
pro:给定警察的射击位置,设计方向,敌人的位置,敌人的头部半径,问子弹是否可以射到头部. sol:即问头部中点到子弹射线的距离是否小于等于头部半径. 和二维的点到直线一样的操作. det/dot: ...
- Gym .101933 Nordic Collegiate Programming Contest (NCPC 2018) (寒假gym自训第四场)
(本套题算是比较温和吧,就是罚时有点高. B .Baby Bites 题意:给出一个婴儿给出的数组,有一些数字听不清楚,让你还原,问它是否是一个从1开始的一次增加的数组. 思路:从左往右依次固定,看是 ...
- ZOJ - 4089 :Little Sub and Isomorphism Sequences (同构 set)
Little Sub has a sequence . Now he has a problem for you. Two sequences of length and of length are ...
- hdoj-1114 (背包dp)
题目链接 题意:已知n种coin的价值和体积 求装满容量为v背包的最小硬币价值 #include <algorithm> #include <cstdio> #include ...
- Linux更改yum源
环境 centos6 阿里云镜像地址 https://opsx.alibaba.com/mirror(本篇所选) centos官网镜像 http://mirror.centos.org/ 网易云镜像地 ...
- C++学习(十)(C语言部分)之 分支语句
#include<stdio.h> // std 标准 io ----> input output 输入 输出 printf scanf getchar ...... #i ...