传送门

分析:将整个矩阵看成 “回” 形状的分层结构,然后进行去层处理,使得要求得 \((i,j)\) 处于最外层,然后再分情况讨论。最外面的一层共有数: $ 4 * n - 4 $ . 第二层共有数: 4n-4 -8

假设 $ (i,j) $ 外共有 $ x $ 层,则外层所有的数为: $ ans=4
nx-4x*x $ 。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
using namespace std ; inline int read () {
int f = 1 , x = 0 ;
char ch = getchar () ;
while(ch > '9' || ch < '0') {if(ch == '-') f = -1 ; ch = getchar () ;}
while(ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + ch - '0' ; ch = getchar () ;}
return x * f ;
} int n , x , y ;
int t , ans ; int main () {
n = read () ;
x = read () ; y = read () ;
t = min(x - 1 , n - x) ;
t = min(t , min(y - 1 , n - y) ) ;
ans = 4 * n * t - 4 * t * t ; if(x - t == 1)
ans += y - t ;
else if(x + t == n)
ans += 3 * n - 5 * t - 1 - y ;
else if(y - t == 1)
ans += 4 * n - 7 * t - 2 - x ;
else ans += n - 3 * t + x - 1 ;
printf("%d\n" , ans) ;
return 0 ;
}

洛谷P2239 螺旋矩阵的更多相关文章

  1. 洛谷——P2239 螺旋矩阵

    P2239 螺旋矩阵 题目描述 一个n行n列的螺旋矩阵可由如下方法生成: 从矩阵的左上角(第1行第1列)出发,初始时向右移动:如果前方是未曾经过的格子,则继续前进,否则右转:重复上述操作直至经过矩阵中 ...

  2. 【洛谷P2239 螺旋矩阵】

    题目链接 直接看题 一看就很数学 我们不妨来画图 画出几个矩阵,找他们的关系 然后发现 当i==1时,对应的值就是j所对应的值: 当i==n时,所对应的值就是3*n-2-j+1: 当j==1时,所对应 ...

  3. 洛谷 P2239 螺旋矩阵(模拟 && 数学)

    嗯... 题目链接:https://www.luogu.org/problem/P2239 这道题首先不能暴力建图,没有简单方法,只有进行进行找规律. AC代码: #include<cstdio ...

  4. P2239 螺旋矩阵

    P2239 螺旋矩阵 题解 这题看上去是个暴力,但是你看数据范围啊,暴力会炸 实际上这是一道数学题QWQ 先看看螺旋矩阵是个什么亚子吧 好吧,找找规律 1 2 ... ... ... ... ... ...

  5. 【bzoj3240 && 洛谷P1397】矩阵游戏[NOI2013](矩阵乘法+卡常)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3240 这道题其实有普通快速幂+费马小定理的解法……然而我太弱了,一开始只想到了矩阵乘法的 ...

  6. BZOJ1059或洛谷1129 [ZJOI2007]矩阵游戏

    BZOJ原题链接 洛谷原题链接 通过手算几组例子后,很容易发现,同一列的\(1\)永远在这一列,且这些\(1\)有且仅有一个能产生贡献,行同理. 所以我们可以只考虑交换列,使得每一行都能匹配一个\(1 ...

  7. 【洛谷p2239】螺旋矩阵

    关于题前废话: 这道题的数据范围过于强大了qwq,显然如果我们开一个30000*30000的二维数组来模拟,显然首先就开不下这么大的数组,然后暴力搜索的话也会爆掉,所以直接模拟显然是一个不正确的选择( ...

  8. 洛谷P1397 [NOI2013]矩阵游戏

    矩阵快速幂+费马小定理 矩阵也是可以跑费马小定理的,但是要注意这个: (图是盗来的QAQ) 就是说如果矩阵a[i][i]都是相等的,那么就是mod p 而不是mod p-1了 #include< ...

  9. 【洛谷P1129】矩阵游戏

    题目大意:给定一个 N*N 的矩阵,有些格子是 1,其他格子是 0.现在允许交换若干次行和若干次列,求是否可能使得矩阵的主对角线上所有的数字都是1. 题解:首先发现,交换行和交换列之间是相互独立的.主 ...

随机推荐

  1. JS面试题(二)(常见算法编程)

    1.字符串转驼峰 例如:border-bottom-color ----> borderBottomColor var str="border-bottom-color"; ...

  2. Tomcat的配置文件详解

    Tomcat的配置文件详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Tomcat的配置文件 Tomcat的配置文件默认存放在$CATALINA_HOME/conf目录中, ...

  3. 编译安装php-7.1.17及部分扩展

    ./configure --prefix=/usr/local/php-7.1.17 --disable-debug --enable-shmop --with-gd --with-jpeg-dir= ...

  4. 在IIS上启用Gzip压缩(HTTP压缩)

    一.摘要 本文总结了如何为使用IIS托管的网站启用Gzip压缩, 从而减少网页网络传输大小, 提高用户显示页面的速度. 二.前言. 本文的知识点是从互联网收集整理, 主要来源于中文wiki.  使用Y ...

  5. docker下载镜像与替换默认源

    1.常用源 中科大docker源:https://mirrors.ustc.edu.cn/docker-ce/ 使用参考文档:http://mirrors.ustc.edu.cn/help/docke ...

  6. Java Calendar详解

    网上看到的一篇,码一下.侵删 一:字段和方法的信息 YEAR 字段: public static final int YEAR ; 指示年的 get 和 set 的字段数字.这是一个特定于日历的值: ...

  7. ssm框架结构的搭建

    ssm框架结构的搭建

  8. Ajax提交请求模板

    function methodName() { var params = { }; var url = ''; jQuery.ajax({ type: 'POST', contentType: 'ap ...

  9. Jquery中click事件重复执行的问题

    平常没注意事件绑定问题,在此注意一下: function testClick(obj){ $("select").off().on("click", funct ...

  10. Jetson tx2的tensorflow keras环境搭建

    其实我一直都在想,搞算法的不仅仅是服务,我们更是要在一个平台上去实现服务,因此,在工业领域,板子是很重要的,它承载着无限的机遇和挑战,当然,我并不是特别懂一些底层的东西,但是这篇博客希望可以帮助有需要 ...