n个整数中1出现的次数
整数中1出现的次数(从1到n整数中1出现的次数) (两种方法:1、规律。2暴力求解)
题目描述
求出1 ~ 13的整数中1出现的次数,并算出100 ~ 1300的整数中1出现的次数?为此他特别数了一下1 ~ 13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数。
规律( 1 的数目)
如果第 i 位(自右向左,从1开始标号)上的数字是0,则第 i 位可能出现 1 的次数由更高位决定(若没有高位,则视高位为0),等于更高位数乘以当前位数的权重(10i-1)
如果第 i 位上的数字为 1,则第 i 位上出现 1 的次数不仅受更高位影响,还受低位影响(若没有低位,视低位为0),等于更高位数乘以当前位数的权重 (10i-1) + (低位数 + 1)
如果第 i 位上的数字大于 1,则第 i 位上可能出现 1 的次数仅由更高位决定(若没有高位,视高位为0),等于(更高位数 + 1)乘以当前位数的权重 (10i-1)
规律(x 的数目)
这里的 x 属于[1, 9], 因为 x = 0 不符合下列规律,需要单独计算
首先要知道以下规律
- 从 1 至 10,在它们的个位数中,任意的 x 都出现了 1 次
- 从 1 至 100,在它们的十位数中,任意的 x 都出现了 10 次
- 从1至1000,在它们的百位数中,任意的x都出现了100次
- 依次类推,从 1 至 10i,在它们的左数第二位(右数第 i 位),任意的 x 都出现了 (10i-1)次。这个规律很容易验证,这里不再多做说明
接下以 n = 2593, x = 5 为例来解释如何得到数学公式。从 1 至 2593中,数字 5 总计出现了 813 次,其中有 259次出现在个位,260次出现在十位,294次出现在百位,0次出现在千位
现在依次分析这些数据,首先是个位。从 1 至 2590 中,包含了 259 个 10,因此任意的 x 都出现了 259 次。最后剩余的三个数 2531,2592,2593,因为它们最大的个位数字 3 < x。因此不会包含任何 5. (也可以这么看, 3 < x, 则个位上可能出现的 x 的位数由更高位决定,等于更高位数字 (259) * 101-1 = 259)。
然后是十位。从 1 至 2500中,包含了25个100,因此任意的 x 都出现了 25 * 10 = 250 次。剩下的数字从 2501 至 2593,它们最大的十位数是 9 > x,因此会包含全部 10 个 5。最后总计 250 + 10 = 260。(也可以这么看,9 > x,则十位上可能出现的 x 的位数由更高位决定,等于更高位数字(25 + 1) * 102-1 = 260)
接下来是百位。从1至2000中,包含了2个1000,因此任意x都出现了2 * 100 = 200次。剩下的数字从2001至2593,它们最大的百位数字5 == x,这时候情况就略微复杂,它们的百位肯定是包含5的,但是不会包含全部100个。如果把百位是5的列出来,是从2500至2593,数字的个数与十位和个位数字有关,是93 + 1 = 94。最后总计 200 + 94 = 294。(也可以这么看, 5 == x,则百位上可能出现的x次数不仅受跟高位影响,还受低位影响,等于更高位数字 2 * 103-1 + (93 + 1))
最后是千位,现在已经没有更高位,因此直接看最大的千位数字 2 < x,因此不会包含任何 5 。(也可以这么看,2 < x,则千位上可能出现的x的次数仅由更高位决定,等于更高位数字 0 * 104-1 = 0)
到此为止,已经计算出全部数字 5 的出现次数。
总结
总结一下以上的算法,可以看到,当计算右数第 i 位包含的 x 的个数时:
取第 i位左边(高位)的数字,乘以 10i-1,得到基础值 a
取第 i 位数字,计算修正值
如果大于 x , 则结果为 a + 10i-1
如果小于 x,则结果为 a
如果等于 x,则取第 i 位右边(低位)数字,设为 b,最后结果为 a + b + 1
代码
#include <iostream> using namespace std;
int oneNum(int n)
{
int cur=n%;//当前位
int high=n/;//相对于当前位的高位部分
int low=;//低位部分
int count=;//计数
int base=;//基
while(n/base)
{
if(cur==)//题目中要求找1 故小于1的只有0
{
count+=high*base;//高位部分乘以基(见上文的算法总结和规律)
}
else if(cur==)
{
count+=high*base+low+;
}
else{
count+=(high+)*base;
}
base*=;
cur=high%;
high=n/(base*);
low=n%base;
}
return count;
}
int main()
{
int n;
while(cin>>n)
{
cout<<oneNum(n)<<endl;
}
return ;
}
由分析思路或者代码都可以看出,while循环的次数就是n的位数,logn(以10为底),而循环体内执行的操作都是有限次的,所以时间复杂度为O(logn)。
暴力求解:
方法:对1到n中的每一个数,分别判断其中1的个数。
复杂度:O(n*logn)
int oneNum_b(int n)
{
assert(n>=);
int count=;
int curNum=;
for(int i=;i<=n;i++)
{
curNum=i;
while(curNum)
{
if(curNum%==)
count++;
curNum/=;
}
}
return count;
}
n个整数中1出现的次数的更多相关文章
- 整数中1出现的次数(从1到n整数中1出现的次数)
题目:求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.AC ...
- 剑指Offer:面试题32——从1到n整数中1出现的次数(java实现)
问题描述: 输入一个整数n,求1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11,12,1一共出现了5次. 思路:(不考虑时间效率的解法,肯定不 ...
- 题目1373:整数中1出现的次数(从1到n整数中1出现的次数)
题目1373:整数中1出现的次数(从1到n整数中1出现的次数) 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU发来求助信,希望亲们能帮帮他 ...
- 剑指Offer 整数中1出现的次数(从1到n整数中1出现的次数)
题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...
- 1049. Counting Ones/整数中1出现的次数(从1到n整数中1出现的次数)
The task is simple: given any positive integer N, you are supposed to count the total number of 1's ...
- 【面试题032】从1到n整数中1出现的次数
[面试题032]从1到n整数中1出现的次数 题目: 输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数. 例如输入12,从1到12这些整数中包含1的数字有1,10,11和1 ...
- 九度OJ 1373 整数中1出现的次数(从1到n整数中1出现的次数)
题目地址:http://ac.jobdu.com/problem.php?pid=1373 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU ...
- 【剑指offer】面试题32:从1到n整数中1出现的次数
题目: 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.A ...
- 时间效率:整数中1出现的次数(从1到n整数中1出现的次数)
求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.ACMer ...
- 整数中1出现的次数(从1到n的整数中1出现的次数)
题目 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.AC ...
随机推荐
- Scala数据类型的继承结构
Scala中,所有的值都是类对象,而所有的类,包括值类型,都最终继承自一个统一的根类型Any.统一类型,是Scala的又一大特点.更特别的是,Scala中还定义了几个底层类(Bottom Class) ...
- dfs1321
比较抽象吧,看到题时一点思想也没有,参考了别人的代码才知道...渣渣 #include <iostream>#include <stdio.h>#include <str ...
- Tf中的SGDOptimizer学习【转载】
转自:https://www.tensorflow.org/api_docs/python/tf/train/GradientDescentOptimizer 1.tf.train.GradientD ...
- centos 卸载已安装的软件
以mysql举例: 首先查询安装包: rpm -qa|grep mysql 查询到的一个结果为:mysql-community-libs-5.7.13-1.el6.x86_64 yum 删除 yum ...
- sklearn_线性回归
1. 普通线性回归 Linear Regression (1)目标: class sklearn.linear_model.LinearRegression (fit_intercept=True, n ...
- 使用Pytorch进行图像分类,AI challenger 农作物病害分类竞赛源码解读
1.首先对给的数据进行划分,类型为每个类单独放在一个文件夹中 import json import shutil import os from glob import glob from tqdm i ...
- node.js初识12
1.express框架属于后端的框架 cnpm install --save express --save的作用是将下载的保存在package.json中 你可以点击http://www.expres ...
- InstallShield 读注册表函数 RegDBGetKeyValueEx ()执行失败
注: rtn = RegDBGetKeyValueEx(szKey, szNumName, nvType, svNumValue, nvSize); 调用失败如果这个函数的几个参数没有初始化的值,调用 ...
- c# mongo 数组里对象更新
var queryDetail = new BsonDocument("cNo", doc.cNo); queryDetail.AddRan ...
- linux脚本文件执行的方法之间的区别
sh/bash sh a.sh bash a.sh 都是打开一个subshell去读取.执行a.sh,而a.sh不需要有"执行权限",在subshell里运行的脚本里设置变量,不会 ...