题目链接

\(Description\)

一共有\(n+m\)道判断题,其中有\(n\)个答案为"YES",\(m\)个为"NO"。现在以随机顺序给你这\(n+m\)道题,你需要依次回答,每回答一道题就会告诉你该题的正确答案。求最优策略下期望答对多少题。

\(n,m\leq 5\times10^5\)。

\(Solution\)

最优策略自然是每次答剩下数目多的。

每次回答问题要么答对要么答错,且使对应题数-1,不妨用坐标表示。

引用这位dalao的一张图:



左下角为\((0,0)\),右上角为\((n,m)\)(设\(n\geq m\))。题目的每种排列都对应一条从\((n,m)\)走到\((0,0)\)的路径。

那么我们从\((n,m)\)走到\((0,0)\),每走一条蓝边就表示答对一题。可以发现要走的蓝边数目一定是\(n\)(即\(\max(n,m)\))。

如果一直在对角线的一侧走,显然成立。

否则至少要答对\(\max(n,m)-\min(n,m)\)题才能到对角线。然后每答错一题,都会导致一定能答对一题,这里一共会答对\(\min(n,m)\)题。所以总共就是\(\max(n,m)\)。

当走到对角线时(两种答案题数相同),会随便猜一个。这时答对的概率为\(\frac 12\)。即对于每个对角线上的点,每次经过期望答对题数都为\(\frac 12\)。

那么我们对每个对角线上的点统计经过它的路径有多少条即可。然后再除以总路径数,再乘以\(\frac 12\),最后加上\(\max(n,m)\)。

//18ms	7936KB
#include <cstdio>
#include <algorithm>
#define mod 998244353
const int N=1e6; int fac[N+3],ifac[N+3]; inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=1ll*x*x%mod)
if(k&1) t=1ll*t*x%mod;
return t;
}
#define C(n,m) (1ll*fac[n+m]*ifac[n]%mod*ifac[m]%mod)//C(n+m,n) int main()
{
int n,m; scanf("%d%d",&n,&m);
if(n<m) std::swap(n,m); int lim=n+m; fac[0]=fac[1]=1;
for(int i=1; i<=lim; ++i) fac[i]=1ll*fac[i-1]*i%mod;
ifac[lim]=FP(fac[lim],mod-2);
for(int i=lim; i; --i) ifac[i-1]=1ll*ifac[i]*i%mod; long long ans=0;
for(int i=1; i<=m; ++i) ans+=1ll*C(i,i)*C(n-i,m-i)%mod;
ans=ans%mod*FP(C(n,m),mod-2)%mod*FP(2,mod-2)%mod;
printf("%lld\n",(ans+n)%mod); return 0;
}

AGC 019F.Yes or No(思路 组合)的更多相关文章

  1. Solution -「AGC 019F」「AT 2705」Yes or No

    \(\mathcal{Description}\)   Link.   有 \(n+m\) 个问题,其中 \(n\) 个答案为 yes,\(m\) 个答案为 no.每次你需要回答一个问题,然后得知这个 ...

  2. 基于C#程序设计语言的三种组合算法

    目录 基于C#程序设计语言的三种组合算法 1. 总体思路 1.1 前言 1.2 算法思路 1.3 算法需要注意的点 2. 三种组合算法 2.1 普通组合算法 2.2 与自身进行组合的组合算法 2.3 ...

  3. [LeetCode] Combinations [38]

    称号 Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exa ...

  4. 剑指Offer——携程笔试题+知识点总结

    剑指Offer--携程笔试题+知识点总结 情景回顾 时间:2016.9.17 19:10-21:10 地点:山东省网络环境智能计算技术重点实验室 事件:携程笔试 总体来说,携程笔试内容与其它企业笔试题 ...

  5. [LeetCode] Subsets I (78) & II (90) 解题思路,即全组合算法

    78. Subsets Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a ...

  6. leetCode 47.Permutations II (排列组合II) 解题思路和方法

    Permutations II  Given a collection of numbers that might contain duplicates, return all possible un ...

  7. stark组件开发之组合搜索实现思路

    - 关键字搜索. 可以做到的效果是, 输入20. 后太通过 Q()  函数. 来实现.  搜索是一个大的问题点. -  要想实现组合搜索, 首先要 明确的一点是. 在我当前的页面上, 正在进行展示的是 ...

  8. AGC 001E.BBQ Hard(组合 DP)

    题目链接 \(Description\) 给定长为\(n\)的两个数组\(a,b\),求\[\sum_{i=1}^n\sum_{j=i+1}^n\binom{a_i+a_j+b_i+b_j}{a_i+ ...

  9. BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)

    题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...

随机推荐

  1. MHL技术剖析,比HDMI更强【转】

    转自:http://blog.chinaunix.net/uid-22030783-id-3294750.html MHL这个只是经常听说,没有见过的东西,现在已经非常火热了,我们才刚刚开始做,人家三 ...

  2. 配置samba文件服务器

    1.打开"终端窗口",输入"sudo apt-get update"-->回车-->"输入当前登录用户的管理员密码"--> ...

  3. Oracle数据库操作基本语法

    创建表 SQL>create table classes(        classId number(2),        cname varchar2(40),        birthda ...

  4. Golang依赖管理工具:glide从入门到精通使用

    这是一个创建于 2017-07-22 05:33:09 的文章,其中的信息可能已经有所发展或是发生改变. 介绍 不论是开发Java还是你正在学习的Golang,都会遇到依赖管理问题.Java有牛逼轰轰 ...

  5. 【转载】如何让图片按比例响应式缩放、并自动裁剪的css技巧

    原文: http://blog.csdn.net/oulihong123/article/details/54601030 响应式网站.移动端页面在DIV CSS布局中对于图片列表或图片排版时, 如果 ...

  6. OCM_第二天课程:Section1 —》配置 Oracle 网络环境

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  7. sublime text 3配置c/c++编译环境

    关于gcc和g++ 安装编译器是后面所有工作的基础,如果没有编译器,后面的一切都无从谈起.在windows下使用gcc和g++,是通过安装MinGW实现的. 安装MinGW MinGW是Minimal ...

  8. 双线程 线性dp 传纸条

    /* 两种做法:一是暴力dp[i][j][k][l] 二是以走的步数k作为阶段, dp[k][i][j]表示走到第k步,第一个人横坐标走到i,第二个人横坐标走到j 可以以此推出第第一个人的坐标为[i, ...

  9. python 全栈开发,Day127(app端内容播放,web端的玩具,app通过websocket远程遥控玩具播放内容,玩具管理页面)

    昨日内容回顾 1. 小爬爬 内容采集 XMLY 的 儿童频道 requests 2. 登陆 注册 自动登陆 退出 mui.post("请求地址",{数据},function(){} ...

  10. python 全栈开发,Day80(博客系统分析,博客主页展示)

    一.博客系统分析 数据库的构建 首先,我们分析一个博客系统的功能: 一个博客可以有多个标签(多对多) 一个博客可以有多条评论(一对多) 一个博客只可以有一个类别(多对一) 接下来,我们分析关系的属性: ...