传送门

\[\sum_{i=1}^{n}\gcd(i,n)
\]

考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\frac{n}{x})=1\),可以知道gcd为\(x\)的数的个数就是\(\varphi_{\frac{n}{x}}\)

所以要求的是$$\sum_{d|n}d*\varphi_{\frac{n}{d}}$$

求\(\varphi\)的话只要像筛素数那样筛出来救星了

#include<bits/stdc++.h>
#define il inline
#define re register
#define LL long long
#define db double
#define ldb long double
#define eps (1e-7) using namespace std;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL n,prm[20][2],p[10000],tt,tmd,a1;
void d1(int o,LL s)
{
if(o>tt) {p[++tmd]=s;return;}
for(int i=0;i<=prm[o][1];i++)
{
d1(o+1,s);
s*=prm[o][0];
}
}
int main()
{
n=rd();
LL sn=sqrt(n),bb=n;
for(LL i=2;i<=sn&&bb;i++)
{
if(bb%i==0)
{
prm[++tt][0]=i;
while(bb%i==0) bb/=i,++prm[tt][1];
}
}
if(bb>1) prm[++tt][0]=bb,prm[tt][1]=1;
d1(1,1);
sort(p+1,p+tmd+1);
map<LL,LL> phi;
phi[1]=1,tt=0;
for(LL i=2;i<=tmd;i++)
{
if(phi.find(p[i])==phi.end()) phi[p[i]]=p[i]-1,++tt;
for(int j=1;j<=tt&&p[i]*prm[j][0]<=n;j++)
{
phi[p[i]*prm[j][0]]=phi[p[i]]*1ll*(prm[j][0]-1);
if(p[i]%prm[j][0]==0) {phi[p[i]*prm[j][0]]+=phi[p[i]];break;}
}
}
for(LL i=1;i<=tmd;i++) a1=(a1+phi[p[i]]*(n/p[i]));
printf("%lld ",a1);
return 0;
}

luogu P2303 [SDOi2012]Longge的问题的更多相关文章

  1. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  2. 洛谷P2303 [SDOi2012]Longge的问题

    题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...

  3. P2303 [SDOi2012]Longge的问题

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入输出格式 输入格式: 一 ...

  4. 洛谷P2303 [SDOi2012] Longge的问题 数论

    看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...

  5. 【洛谷题解】P2303 [SDOi2012]Longge的问题

    题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...

  6. P2303 [SDOI2012]Longge的问题 我傻QwQ

    莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\su ...

  7. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  8. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

随机推荐

  1. 如何判断一条记录什么字段被修改了 [问题点数:40分,结帖人bluesukeke]

    查询出来数据,在数据集编辑状态下,如何判断一条记录被修改了,哪些字段被修改了. 可用adoquery的Delta屬性...eg: ClientDataSet1.Delta... PS:POST前是準確 ...

  2. js 消息框

    消息框有三種:警告框.提示框.確認框 警告框: 確保用戶可以得到某些信息. 點擊確定以後,才能繼續後續操作. alert("不好") 確認框: 請用戶確認或者接受某些信息. 點擊確 ...

  3. SpringMVC @RequestBody的使用

    @RequestBody的作用 @RequestBody用于读取Request请求的body数据,然后利用SpringMVC配置的HttpMessageConverter对数据进行转换,最后把转换后的 ...

  4. codeforces548B

    Mike and Fun CodeForces - 548B Mike and some bears are playing a game just for fun. Mike is the judg ...

  5. aop 记录用户操作(一)

    转载: http://www.cnblogs.com/guokai870510826/p/5981015.html 使用标签来设置需要的记录 实例:@ISystemLog() @Controller ...

  6. js md5 中文

    最近手机端通过js对请求数据加密,发现针对中文加密的结果和asp.net的webapi加密结果不一致 网上搜索了一下,发现以下js可用 function md5(string) { var x = A ...

  7. Colored Sticks POJ - 2513(trie树欧拉路)

    题意: 就是无向图欧拉路 解析: 不能用map..超时 在判断是否只有一个联通的时候,我比较喜欢用set,但也不能用set,会超时,反正不能用stl emm 用trie树来编号就好了 #include ...

  8. java web项目406错误的解决

    返回的消息头浏览器不能解释 这里我们使用了@ResponseBody,返回数据后缀是,.json,但是我们的映射器后缀又是.html.最后浏览器收到数据不知该以哪种类型数据来进行解析,所以就会报406 ...

  9. Watchdogs利用Redis实施大规模挖矿,常见数据库蠕虫如何破?

    背景 2月20日17时许,阿里云安全监测到一起大规模挖矿事件,判断为Watchdogs蠕虫导致,并在第一时间进行了应急处置. 该蠕虫短时间内即造成大量Linux主机沦陷,一方面是利用Redis未授权访 ...

  10. 【BZOJ1925】[SDOI2010]地精部落(动态规划)

    [BZOJ1925][SDOI2010]地精部落(动态规划) 题面 BZOJ 洛谷 题解 一道性质\(dp\)题.(所以当然是照搬学长PPT了啊 先来罗列性质,我们称题目所求的序列为抖动序列: 一个抖 ...