[CQOI2018]交错序列



$ solution: $

这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来。所以做这道题必须先知道(矩阵快速幂及如何构建递推矩阵)(组合数及二项式定理)。

不知道大家有没有做过洛谷的帕秋莉手环P哥的桶,这道题中不能有相邻的两个1就是我们在构造这个交错序列时不能连续加入两个1,这个如果直接让我们求方案数(不靠虑一的个数)就是矩阵快速幂的板子了(可以自己推递推方程)。但是这1题偏偏把1的个数搭上了,我们发现1的个数是可以达到 $ 10^8 $ 级别的!所以我们不能直接把1得个数当做一个状态,这里有一个巧妙的避开1的个数的递推方程:

因为我们状态转移时,我们其实只需要知道序列末尾是1还是0,而1的个数我们不妨不管(为什么要折磨自己呢?)我们可以用 $ F[i][j][0/1] $ 为前 $ i $ 位,最后一位为 $ 0/1 $ ,满足条件的序列的1的个数的j次方和(注意是j次方和)。然后我们就可以避开1的个数(因为每一次我们如果要在序列末尾加一个1,就相当于所有长度为i的末尾为一的序列都要加上一个1,然后我们只要求 $ (y+1)^j $ 即可!这个可以用二项式定理搞一下)(这样建出来的矩阵只有90*90可以勉强过)(需要卡常)

后效性:我们避开了一的个数,但是我们需要求零得个数啊!这又怎么办呢?我们把题目要我们求的东西转化一下: $ xayb=(n-y)ayb=\sum_{i=0}{a}C(a,i)ni(-y){a-i}yb $ 这样我们就可以用我们之前设的(满足条件的序列的1的个数的j次方和)的这一维状态求解了!

卡常:因为这一题的模数小于 $ 10^8 $ 不是 $ 10^9 $ 我们矩阵乘法的时候可以多加几次再取模(详情看代码),不然真的很难卡常数!



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ull unsigned long long
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int n,a,b,m,t,f,tot;
int C[93][93],nf[95]; struct su{
ll s[182][182];
inline void operator *(su x){
su y;
for(rg i=0;i<t;++i)
for(rg j=0;j<t;++j)
y.s[i][j]=0;
for(rg i=0;i<t;++i)
for(rg j=0;j<t;++j){
for(rg k=0;k<t;++k)
y.s[i][j]+=s[i][k]*x.s[k][j];
y.s[i][j]%=m;
}
*this=y;
}
}bas,ans; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); a=qr(); b=qr(); m=qr();
f=a+b+1; t=f<<1; nf[0]=1;
for(rg i=0;i<f;++i){
C[0][i]=1;
bas.s[i][i]=1;
bas.s[f+i][i]=1;
bas.s[0][f+i]=1;
nf[i+1]=(ull)nf[i]*n%m;
}
for(rg i=1;i<f;++i)
for(rg j=i;j<f;++j)
C[i][j]=(C[i][j-1]+C[i-1][j-1])%m,bas.s[i][f+j]=C[i][j];
ans.s[0][0]=1;
while(n){
if(n&1)ans*bas;
bas*bas; n>>=1;
}
for(rg i=0;i<=a;++i){
rg j=a+b-i;
rg x=(ll)C[i][a]*((a-i)&1?-1:1)*nf[i]%m;
rg y=(ans.s[0][j]+ans.s[0][j+f])%m;
tot=(tot+(ll)x*y)%m;
}printf("%d\n",(tot+m)%m);
return 0;
}

[CQOI2018]交错序列 (矩阵快速幂,数论)的更多相关文章

  1. HDU6395 Sequence(矩阵快速幂+数论分块)

    题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...

  2. 51nod 1197 字符串的数量 V2(矩阵快速幂+数论?)

    接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿 如上图.(刚画错了一发...已更新 然后就可以过V2了 or ...

  3. 【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)

    [BZOJ5298][CQOI2018]交错序列(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数. 显然就是把\(1\)当做 ...

  4. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  5. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  6. 【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)

    [BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减 ...

  7. cf 450b 矩阵快速幂(数论取模 一大坑点啊)

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  8. 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂

    Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...

  9. HDU 2256 Problem of Precision 数论矩阵快速幂

    题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...

随机推荐

  1. SQL连接:内连接、外连接、交叉连接。

    SQL连接可以分为内连接.外连接.交叉连接. 数据库数据:             book表                                          stu表 1.内连接 ...

  2. mysql DDL&DML 语言

    DDL:数据定义语言 CREATE, ALTER, DROP CREATE相关的常用命令: CREATE DATABASECREATE EVENTCREATE FUNCTIONCREATE FUNCT ...

  3. docker --Dockerfile--最小java环境

    # AlpineLinux open jre 8FROM alpine:latest # Install cURLRUN echo -e "https://mirror.tuna.tsing ...

  4. BZOJ1861[Zjoi2006]书架——非旋转treap

    题目描述 小T有一个很大的书柜.这个书柜的构造有些独特,即书柜里的书是从上至下堆放成一列.她用1到n的正整数给每本书都编了号. 小T在看书的时候,每次取出一本书,看完后放回书柜然后再拿下一本.由于这些 ...

  5. python3网络爬虫(2.1):爬取堆糖美女

    额,明明记得昨晚存了草稿箱,一觉醒来没了,那就简写点(其实是具体怎么解释我也不太懂/xk,纯属个人理解,有错误还望指正) 环境: 版本:python3 IDE:pycharm2017.3.3 浏览器: ...

  6. 05 Zabbix triggers--action--event

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 05 Zabbix triggers--action--event 动作action: 在配置好监 ...

  7. 【BZOJ1800】[AHOI2009]飞行棋(暴力)

    [BZOJ1800][AHOI2009]飞行棋(暴力) 题面 BZOJ 洛谷 题解 预处理一下前缀和就可以\(O(1)\)计算两点间的距离了,直接\(O(n^4)\)暴力枚举即可. #include& ...

  8. 洛谷 P2058 海港 解题报告

    P2058 海港 题目描述 小K是一个海港的海关工作人员,每天都有许多船只到达海港,船上通常有很多来自不同国家的乘客. 小K对这些到达海港的船只非常感兴趣,他按照时间记录下了到达海港的每一艘船只情况: ...

  9. 【学习笔记 边分树】【uoj400】【CTSC2018】暴力写挂

    题目 描述 ​ 有两棵树\(T\)和\(T'\),节点个数都为\(n\),根节点都为\(1\)号节点; ​ 求两两点之间 $$ \begin{align} depth(x) + depth(y) - ...

  10. 3分钟学会sessionStorage用法

    前言: 因最近移动端开发过程中遇到一个运营提出的所谓技术难点需求,对于原生APP来说轻而易举,毕竟自己的APP用户操作指哪打哪,但是H5该怎么做?H5就实现不了么?对于一个爱研究攻克这些前端棘手问题的 ...