大数据处理框架之Strom:容错机制
1、集群节点宕机
Nimbus服务器
单点故障,大部分时间是闲置的,在supervisor挂掉时会影响,所以宕机影响不大,重启即可
非Nimbus服务器
故障时,该节点上所有Task任务都会超时,Nimbus会将这些Task任务重新分配到其他服务器上运行
2、进程挂掉
Worker
挂掉时,Supervisor会重新启动这个进程。如果启动过程中仍然一直失败,并且无法向Nimbus发送心跳,Nimbus会将该Worker重新分配到其他服务器上
Supervisor
无状态(所有的状态信息都存放在Zookeeper中来管理)
快速失败(每当遇到任何异常情况,都会自动毁灭)
Nimbus
无状态(所有的状态信息都存放在Zookeeper中来管理)
快速失败(每当遇到任何异常情况,都会自动毁灭)
3、消息的完整性
从Spout中发出的Tuple,以及基于他所产生Tuple,由这些消息就构成了一棵tuple树,当这棵tuple树发送完成,并且树当中每一条消息都被正确处理,就表明spout发送消息被“完整处理”,即消息的完整性,storm使用Acker确保消息完整性,Acker是拓扑当中特殊的一些任务,负责跟踪每个Spout发出的Tuple的DAG(有向无环图)
Acker分为ack确认机制和fail失败处理机制,Spout作为数据源,当拓扑中bolt处理失败时该怎么办?Acker机制可以重发数据到bolt进行重新处理。
看下面的例子:
MessageSpout ----> split-bolt ----> write-bolt
MessageTopology
package bhz.topology; import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import bhz.bolt.SpliterBolt;
import bhz.bolt.WriterBolt;
import bhz.spout.MessageSpout; public class MessageTopology { public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new MessageSpout());
builder.setBolt("split-bolt", new SpliterBolt()).shuffleGrouping("spout");
builder.setBolt("write-bolt", new WriterBolt()).shuffleGrouping("split-bolt");
//本地配置
Config config = new Config();
config.setDebug(false);
LocalCluster cluster = new LocalCluster();
System.out.println(cluster);
cluster.submitTopology("message", config, builder.createTopology());
Thread.sleep(10000);
cluster.killTopology("message");
cluster.shutdown();
}
}
MessageSpout
package bhz.spout; import java.util.Map; import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichSpout;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values; public class MessageSpout implements IRichSpout { private static final long serialVersionUID = 1L; private int index = 0; private String[] subjects = new String[]{
"groovy,oeacnbase",
"openfire,restful",
"flume,activiti",
"hadoop,hbase",
"spark,sqoop"
}; private SpoutOutputCollector collector; @Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
} @Override
public void nextTuple() {
if(index < subjects.length){
String sub = subjects[index];
//发送信息参数1 为数值, 参数2为msgId
collector.emit(new Values(sub), index);
index++;
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("subjects"));
}
//当bolt 处理成功 ack确认 spout执行ack方法
@Override
public void ack(Object msgId) {
System.out.println("【消息发送成功!!!】 (msgId = " + msgId +")");
}
//当bolt处理失败时,spout调用fail方法,进行重发处理
@Override
public void fail(Object msgId) {
System.out.println("【消息发送失败!!!】 (msgId = " + msgId +")");
System.out.println("【重发进行中...】");
collector.emit(new Values(subjects[(Integer) msgId]), msgId);
System.out.println("【重发成功!!!】");
} @Override
public void close() { } @Override
public void activate() { } @Override
public void deactivate() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }
SpliterBolt
package bhz.bolt; import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class SpliterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
try {
String subjects = tuple.getStringByField("subjects"); if(!flag && subjects.equals("flume,activiti")){
flag = true;
int a = 1/0;
} String[] words = subjects.split(",");
//List<String> list = new ArrayList<String>();
//int index = 0;
for (String word : words) {
//注意这里循环发送消息,要携带tuple对象,用于处理异常时重发策略
collector.emit(tuple, new Values(word));
//list.add(word);
//index ++;
}
//collector.emit(tuple, new Values(list));
collector.ack(tuple);//通知spout处理成功
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout 处理失败
}
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
} @Override
public void cleanup() { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }
WriterBolt
package bhz.bolt; import java.io.FileWriter;
import java.io.IOException;
import java.util.List;
import java.util.Map; import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.IRichBolt;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class WriterBolt implements IRichBolt { private static final long serialVersionUID = 1L; private FileWriter writer; private OutputCollector collector; @Override
public void prepare(Map config, TopologyContext context, OutputCollector collector) {
this.collector = collector;
try {
writer = new FileWriter("d://message.txt");
} catch (IOException e) {
e.printStackTrace();
}
} private boolean flag = false; @Override
public void execute(Tuple tuple) {
String word = tuple.getString(0);
// List<String> list = (List<String>)tuple.getValueByField("word");
// System.out.println("======================" + list);
try {
if(!flag && word.equals("hadoop")){
flag = true;
int a = 1/0;
}
writer.write(word);
writer.write("\r\n");
writer.flush();
} catch (Exception e) {
e.printStackTrace();
collector.fail(tuple);//通知spout处理失败
}
collector.emit(tuple, new Values(word));
collector.ack(tuple);//通知spout处理成功
} @Override
public void cleanup() { } @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } @Override
public Map<String, Object> getComponentConfiguration() {
return null;
} }
spout重发机制会带来一个问题:数据重复消费,看上面的例子当WriterBolt执行失败的时候,spout 将hadoop,hbase重发,那么hbase会被WriterBolt再执行一次,目前storm对此没有保障机制,按照业务设计的通用做法就是使用幂等性(比如使用唯一性ID),防止重复消费数据。
大数据处理框架之Strom:容错机制的更多相关文章
- 大数据处理框架之Strom: Storm----helloword
大数据处理框架之Strom: Storm----helloword Storm按照设计好的拓扑流程运转,所以写代码之前要先设计好拓扑图.这里写一个简单的拓扑: 第一步:创建一个拓扑类含有main方法的 ...
- 大数据处理框架之Strom:认识storm
Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...
- 大数据处理框架之Strom: Storm拓扑的并行机制和通信机制
一.并行机制 Storm的并行度 ,通过提高并行度可以提高storm程序的计算能力. 1.组件关系:Supervisor node物理节点,可以运行1到多个worker,不能超过supervisor. ...
- 大数据处理框架之Strom:Flume+Kafka+Storm整合
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...
- 大数据处理框架之Strom:DRPC
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 一.DRPC DRPC:Distri ...
- 大数据处理框架之Strom:Storm集群环境搭建
搭建环境 Red Hat Enterprise Linux Server release 7.3 (Maipo) zookeeper-3.4.11 jdk1.7.0_80 Pyth ...
- 大数据处理框架之Strom:事务
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...
- 大数据处理框架之Strom:redis storm 整合
storm 引入redis ,主要是使用redis缓存库暂存storm的计算结果,然后redis供其他应用调用取出数据. 新建maven工程 pom.xml <project xmlns=&qu ...
- 大数据处理框架之Strom:kafka storm 整合
storm 使用kafka做数据源,还可以使用文件.redis.jdbc.hive.HDFS.hbase.netty做数据源. 新建一个maven 工程: pom.xml <project xm ...
随机推荐
- 1-3-编译Linux内核
1-3-编译Linux内核 1.将Linux源码包拷贝到共享文件夹. 2.进入共享文件夹. 3.解压,命令#tar xvfj Kernel_3.0.8_TQ210_for_Linux_v2.2.tar ...
- 【托业】【新托业TOEIC新题型真题】学习笔记3-题库二->P5-6
--------------------------------------单词-------------------------------------- oppose vt. 反对:对抗,抗争 v ...
- MySQL 5.5加主键锁读问题【转载】
背景 有同学讨论到MySQL 5.5下给大表加主键时会锁住读的问题,怀疑与fast index creation有关,这里简单说明下. 对照现象 为了说明这个问题的原因,有 ...
- 配置AlwaysON出错
在其中一个集群节点的SQL Server中验证各节点的投票数 ,在其中一个集群节点的SQL Server上执行使用下面SQL语句 SELECT * FROM sys.dm_hadr_cluster_m ...
- vue中让input框自动聚焦
created(){ this.changfouce(); }, methods: { //在vue生命周期的created()钩子函数进行的DOM操作要放在Vue.nextTick()的回调函数中, ...
- 装系统w7、ubuntu、centos等系统(一)
装w7系统准备 1.从老毛桃u盘启动盘制作工具_老毛桃u盘装系统_老毛桃pe_老毛桃官网下载装机版 2.一个正常使用的U盘,但容量大于4G,并且插入电脑保持连接 3.老毛桃装机版选择U盘启动-> ...
- Centos 7 设置ssh只允许特定用户从指定的IP登录
1.编辑文件 /etc/ssh/sshd_config vi /etc/ssh/sshd_config 2.root用户只允许在如下ip登录AllowUsers root@203.212.4.117A ...
- android SDK打包app
SDK 软件开发工具包(Software Development Kit) JDK 开发工具包(Java Developer's Kit) 1.搜索java jdk 进入官网 http://www ...
- python 格式化字符串"%s"%
%s 字符串 (采用str()的显示) %r 字符串 (采用repr()的显示) %c 单个字符 %b 二进制整数 %d 十进制整数 %i 十进制整数 %o ...
- echarts实现全国地图
1.首先我没有按需引入echarts,我是全局引入的,所以说在node_modules中有 这个china,你只需要在你的页面引入即可 但是按需引入echarts 的 项目中node_modules中 ...