[Stats385] Lecture 01-02, warm up with some questions
Theories of Deep Learning
借该课程,进入战略要地的局部战斗中,采用红色字体表示值得深究的概念,以及想起的一些需要注意的地方。
Lecture 01
Lecture01: Deep Learning Challenge. Is There Theory? (Donoho/Monajemi/Papyan)
纯粹的简介,意义不大。
Lecture 02
Video: Stats385 - Theories of Deep Learning - David Donoho - Lecture 2
资料:http://deeplearning.net/reading-list/ 【有点意思的链接】
Readings for this lecture
1 A mathematical theory of deep convolutional neural networks for feature extraction
2 Energy propagation in deep convolutional neural networks
3 Discrete deep feature extraction: A theory and new architectures
4 Topology reduction in deep convolutional feature extraction networks
重要点记录:
未知概念:能量传播,Topology reduction
Lecturer said:
"Deep learning is simply an era where brute force has sudenly exploded its potential."
"How to use brute force (with limited scope) methold to yield result."
介绍ImageNet,没啥可说的;然后是基本back-propagation。
提了一句:
Newton法的发明人牛顿从来没想过用到NN这种地方,尬聊。
output的常见输出cost计算【补充】,介绍三种:
Assume z is the actual output and t is the target output.
squared error: | E = (z-t)2/2 |
cross entropy: | E = -t log(z) - (1-t)log(1-z) |
softmax: | E = -(zi - log Σj exp(zj)), where i is the correct class. |
第一个难点:
严乐春大咖:http://yann.lecun.com/exdb/publis/pdf/lecun-88.pdf
通过拉格朗日不等式认识反向传播,摘自论文链接前言。
开始介绍常见的卷积网络模型以及对应引进的feature。
讲到在正则方面,dropout有等价ridge regression的效果。
通过这个对比:AlexNet vs. Olshausen and Field 引出了一些深度思考:
- Why does AlexNet learn filters similar to Olshausen/Field?
- Is there an implicit sparsity-promotion in training network?
- How would classification results change if replace learned filters in first layer with analytically defined wavelets, e.g. Gabors?
- Filters in the first layer are spatially localized, oriented and bandpass. What properties do filters in remaining layers satisfy?
- Can we derive mathematically?
Does this imply filters can be learned in unsupervised manner?
第三个难点:
关于卷积可视化,以及DeepDream的原理。
第四个难点:
补充一个难点:权重初始化的策略
Links:
以上提及的重难点,未来将在此附上对应的博客链接。
[Stats385] Lecture 01-02, warm up with some questions的更多相关文章
- linux下生成00 01 02..99的这些数
[root@localhost ~]# seq -s " " -w 9901 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 ...
- ML Lecture 0-1: Introduction of Machine Learning
本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...
- [Stats385] Lecture 03, Harmonic Analysis of Deep CNN
大咖秀,注意提问环节大家的表情,深入窥探大咖的心态,很有意思. 之前有NG做访谈,现在这成了学术圈流行. Video: https://www.youtube.com/watch?v=oCohnBbm ...
- CS229 Lecture 01
CS229 Lecture notes 01 机器学习课程主要分为4部分:监督学习:学习理论:无监督学习:增强学习. $x^{(i)}$表示特征,$y^{(i)}$表示目标,$i=1...m$.m是训 ...
- [Stats385] Lecture 04: Convnets from Probabilistic Perspective
本篇围绕“深度渲染混合模型”展开. Lecture slices Lecture video Reading list A Probabilistic Framework for Deep Learn ...
- [Stats385] Lecture 05: Avoid the curse of dimensionality
Lecturer 咖中咖 Tomaso A. Poggio Lecture slice Lecture video 三个基本问题: Approximation Theory: When and why ...
- Cheatsheet: 2016 02.01 ~ 02.29
Web How to do distributed locking Writing Next Generation Reusable JavaScript Modules in ECMAScript ...
- Cheatsheet: 2015.02.01 ~ 02.28
Other API Best Practices: API Management Rewriting History with Git Rebase .NET Announcing Microsoft ...
- Cheatsheet: 2014 02.01 ~ 02.28
Database Managing disk space in MongoDB When to use GridFS on MongoDB .NET The Past, Present, and Fu ...
随机推荐
- 安装 jenkins
1. 将jenkins.war包放在 tomcat 的 webapps 目录下即可 2 重启 tomcat 3. 通过浏览器访问 IP:8080/jenkins
- 吴伯凡:VUCA时代的自我迭代
吴伯凡:VUCA时代的自我迭代 https://mp.weixin.qq.com/s?src=3×tamp=1506588223&ver=1&signature=nv ...
- WinPython
WinPython http://winpython.github.io/
- 总结·展望
学了算法也有半年了.也是学期末,确实是该总结了.半年来说不上多努力,毕竟不如高中那时候早晨5点起晚上12点睡,但也确实学到不少东西(尽管眼下来说根本用不到并且我也不确定以为会不会去用.毕竟专业放在那里 ...
- Delphi 中big5 转 Unicode 函数
function Big5ToUnicode(str Char): widestring; var len: integer; begin len:=MultiByteToWideChar(,,PCh ...
- 从零开始优雅的使用mongodb实例
基本连接 一.创建express工程testmon express testmon 二.精简app.js var express = require("express"); var ...
- mysql5.7报err 1055错误 sql_mode=only_full_group_by
vim /etc/my.cnf 末尾增加 sql_mode='STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_B ...
- Mybatis Dynamic Query 更新
文章目录 1. 简介 2. 准备工作 3. 开始更新 3.1. update 3.2. update Null 4. 结束 5. 关注@我 项目地址:https://github.com/wz2coo ...
- Idea调试
Idea调试 学习了:https://www.jb51.net/article/128965.htm 1,多线程同时断点: 2,drop frame 回退调试: 3,条件断点/片段代码: 4,调试的时 ...
- app:processDebugResources
org.gradle.api.tasks.TaskExecutionException: Execution failed for task ':app:processDebugResources'. ...