L3-016 二叉搜索树的结构 (30 分) 二叉树
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。(摘自百度百科)
给定一系列互不相等的整数,将它们顺次插入一棵初始为空的二叉搜索树,然后对结果树的结构进行描述。你需要能判断给定的描述是否正确。例如将{ 2 4 1 3 0 }插入后,得到一棵二叉搜索树,则陈述句如“2是树的根”、“1和4是兄弟结点”、“3和0在同一层上”(指自顶向下的深度相同)、“2是4的双亲结点”、“3是4的左孩子”都是正确的;而“4是2的左孩子”、“1和3是兄弟结点”都是不正确的。
输入格式:
输入在第一行给出一个正整数N(≤),随后一行给出N个互不相同的整数,数字间以空格分隔,要求将之顺次插入一棵初始为空的二叉搜索树。之后给出一个正整数M(≤),随后M行,每行给出一句待判断的陈述句。陈述句有以下6种:
A is the root
,即"A
是树的根";A and B are siblings
,即"A
和B
是兄弟结点";A is the parent of B
,即"A
是B
的双亲结点";A is the left child of B
,即"A
是B
的左孩子";A is the right child of B
,即"A
是B
的右孩子";A and B are on the same level
,即"A
和B
在同一层上"。
题目保证所有给定的整数都在整型范围内。
输出格式:
对每句陈述,如果正确则输出Yes
,否则输出No
,每句占一行。
输入样例:
5
2 4 1 3 0
8
2 is the root
1 and 4 are siblings
3 and 0 are on the same level
2 is the parent of 4
3 is the left child of 4
1 is the right child of 2
4 and 0 are on the same level
100 is the right child of 3
输出样例:
Yes
Yes
Yes
Yes
Yes
No
No
No
模拟搜索二叉树即可
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 10000
map<int,int>mp;
int a[N];
int n;
void build(void )
{
CLR(a,-);
rep(i,,n)
{
int x;
RI(x);
int id=;
while()
{
if(a[id]==-)
{
a[id]=x;
mp[x]=id;
break;
}
else if(x>a[id])
{
id=id*+;
}
else id*=;
}
}
}
int deep(int x)
{
int d=;
int L=,R=;
if(x==)return ;
while()
{
if(x>=L&&x<=R)
return d; L*=;
R=L*-;
d++;
}
} int main()
{
RI(n);
build();
int q;
RI(q);
string str;
while(q--)
{
int a;
RI(a);
cin>>str;
if(str=="is")
{
cin>>str;
cin>>str;
if(str=="root")
{
if(mp[a]==)
puts("Yes");
else puts("No"); }
else if(str=="parent")
{
cin>>str;
int b;RI(b);
if(mp[b]/==mp[a])
puts("Yes");
else puts("No");
}
else if(str=="left")
{
cin>>str;cin>>str;
int b;RI(b);
if(mp[b]*==mp[a])
puts("Yes");
else puts("No");
}
else if(str=="right")
{
cin>>str;
cin>>str;
int b;RI(b);
if(mp[b]*+==mp[a])
puts("Yes");
else puts("No");
}
}
else if(str=="and")
{
int b;RI(b);
cin>>str;
cin>>str;
if(str=="siblings")
{
if( abs(mp[b]-mp[a])== )
puts("Yes");
else puts("No");
}
else if(str=="on")
{
cin>>str>>str>>str;
if(mp[a]==||mp[b]==)//数据有一些问题 会出现提问的数字不在树里
puts("No");
else if(deep(mp[a])==deep(mp[b]))
puts("Yes");
else puts("No");
}
}
} return ;
}
L3-016 二叉搜索树的结构 (30 分) 二叉树的更多相关文章
- 天梯赛练习 L3-016 二叉搜索树的结构 (30分)
题目分析: 用数型结构先建树,一边输入一边建立,根节点的下标为1,所以左孩子为root*2,右孩子为root*2+1,输入的时候可用cin输入字符串也可用scanf不会超时,判断是否在同一层可以判断两 ...
- PTA 7-2 二叉搜索树的结构(30 分)
7-2 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大 ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...
- 【开200数组解决二叉搜索树的建立、遍历】PAT-L3-016. 二叉搜索树的结构——不用链表来搞定二叉搜索树
L3-016. 二叉搜索树的结构 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它 ...
- L3-1 二叉搜索树的结构 (30 分)
讲解的很不错的链接:https://blog.csdn.net/chudongfang2015/article/details/79446477#commentBox 题目链接:https://pin ...
- L3-016 二叉搜索树的结构 (30 分)
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...
- PAT L3-016 二叉搜索树的结构
https://pintia.cn/problem-sets/994805046380707840/problems/994805047903240192 二叉搜索树或者是一棵空树,或者是具有下列性质 ...
- L3-016. 二叉搜索树的结构
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...
随机推荐
- utf8_bin跟utf8_general_ci的区别
ci是 case insensitive, 即 "大小写不敏感", a 和 A 会在字符判断中会被当做一样的; bin 是二进制, a 和 A 会别区别对待. 例如你运行: SEL ...
- dense prediction
Dense prediction fully convolutional network for sementic segmentation 先用feature extractor 提特征,然后再使 ...
- asp.net mvc4 在EF新增的时候报对一个实体或多个实体验证失败
//entity为空 是数据库上下文会验证实体验证 var entity = db.UserInfo.Where(u => u.Mobile == mobile).FirstOrDefault( ...
- luogu P1641 [SCOI2010]生成字符串
传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1 ...
- servlet相关
servlet是在服务器端运行的一个小程序.一个servlet就是一个java类,并且可以通过“请求-响应”编程模型来访问的这个驻留在服务器内存里的servlet程序. 1.生命周期 2.内置对象 r ...
- python - 练习(获取windows硬件信息)
import subprocess import re # info = subprocess.Popen("systeminfo",shell=True,stdout=subpr ...
- Maven继承
继承为了消除重复,可以把pom 中很多相同的配置提取出来:如:grouptId, version 等. 在使用的时候子工程直接继承父工程的依赖版本号,子工程中不再需要指定具体版本号,方便统一管控项目的 ...
- 简述JavaScript作用域与作用域链
关于变量作用域的知识,相信学习JavaScript的朋友们一定早已经接触过,这里简单列举: JavaScript中变量是以对象属性的形式存在的:全局变量是全局对象的属性:局部变量是声明上下文对象的属性 ...
- ES系列十六、集群配置和维护管理
一.修改配置文件 1.节点配置 1.vim elasticsearch.yml # ======================== Elasticsearch Configuration ===== ...
- Thymeleaf:访问Spring中的bean
项目做了动静分离,即静态文件全部放在nginx中,动态文件在tomcat中,如何引用静态文件,我是这么做的,见下: 运行结果: