题面

⼩ w ⼼⾥的⽕焰就要被熄灭了。 简便起⻅,假设⼩ w 的内⼼是⼀棵 n − 1 条边,n 个节点的树。 现在你要在每个节点⾥放⼀些个灭⽕器,每个节点可以放任意多个。 接下来每个节点都要被分配给⼀个⾄多 k 条边远的灭⽕器,每个灭⽕器最多能分配给 s 个节 点。 ⾄少要多少个灭⽕器才能让⼩ w 彻底死⼼呢?

题解

树形DP,由于k≤20k\le 20k≤20,用f[i][j]f[i][j]f[i][j]存iii这个点下面距离为jjj的未匹配点有多少个,g[i][j]g[i][j]g[i][j]存iii下面能够再往上拓展jjj长度的灭火器分配数量(一个灭火器提供sss的数量)。那么根据贪心,肯定是f[i][k]f[i][k]f[i][k]必须在iii处放灭火器,然后剩下的能配就配,因为如果可以,在下面配显然更优。

时间复杂度O(nk)O(nk)O(nk)。

CODE

#include <bits/stdc++.h>
using namespace std;
inline void rd(int &x) {
char ch; while(!isdigit(ch=getchar()));
for(x=ch-'0';isdigit(ch=getchar());x=x*10+ch-'0');
}
const int MAXN = 100005;
const int MAXK = 25;
int n, s, k, ans;
int fir[MAXN], to[MAXN<<1], nxt[MAXN<<1], cnt;
inline void link(int u, int v) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt;
to[++cnt] = u; nxt[cnt] = fir[v]; fir[v] = cnt;
}
int f[MAXN][MAXK], g[MAXN][MAXK];
void dfs(int u, int ff) {
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != ff) {
dfs(v, u);
for(int j = 0; j < k; ++j) f[u][j+1] += f[v][j];
for(int j = 1; j <= k; ++j) g[u][j-1] += g[v][j], g[u][j-1] = min(g[u][j-1], n);
//此处g可能加爆int 我就因为这里考试爆了10分(没能akQAQ)
}
++f[u][0];
if(f[u][k]) {
int need = (f[u][k]+s-1) / s;
ans += need;
g[u][k] += min(1ll*need*s, 1ll*n) - f[u][k];
f[u][k] = 0;
}
int tmp, cur = k;
for(int i = k; i >= 0; --i) {
while(f[u][i] && cur >= i) {
tmp = min(f[u][i], g[u][cur]);
f[u][i] -= tmp, g[u][cur] -= tmp;
if(!g[u][cur]) --cur;
}
}
}
int main () {
rd(n), rd(s), rd(k);
for(int i = 1, u, v; i < n; ++i) rd(u), rd(v), link(u, v);
dfs(1, 0);
int sum = 0;
for(int i = 0; i <= k; ++i) sum += f[1][i];
printf("%d\n", ans + (sum + s-1) / s);
}

CSP模拟赛 Repulsed(树形DP)的更多相关文章

  1. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  2. 4.13 省选模拟赛 树 树形dp 卷积 NTT优化dp.

    考试的时候 看到概率 看到期望我就怂 推了一波矩阵树推自闭了 发现 边权点权的什么也不是. 想到了树形dp 维护所有边的断开情况 然后发现数联通块的和再k次方过于困难. 这个时候 应该仔细观察一下 和 ...

  3. CSP模拟赛 Matrix(DP)

    题面 求出满足以下条件的 n*m 的 01 矩阵个数: (1)第 i 行第 1~li 列恰好有 1 个 1. (2)第 i 行第 ri~m 列恰好有 1 个 1. (3)每列至多有 1 个 1. n, ...

  4. BZOJ4849[Neerc2016]Mole Tunnels——模拟费用流+树形DP

    题目描述 鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间有一条隧 道,第i个洞内还有ci个食物能供最多ci只鼹鼠吃.一共有m只鼹鼠,第i只 ...

  5. 【JZOJ5071】【GDSOI2017第二轮模拟】奶酪 树形dp

    题面 CJY很喜欢吃奶酪,于是YJC弄到了一些奶酪,现在YJC决定和CJY分享奶酪. YJC弄到了n-1块奶酪,于是他把奶酪挂在了一棵n个结点的树上,每根树枝上挂一块奶酪,每块奶酪都有重量. YJC和 ...

  6. CSP模拟赛游记

    时间:2019.10.5 考试时间:100分钟(连正式考试时间的一半还没有到)题目:由于某些原因不能公开. 由于第一次接触NOIinux系统所以连怎么建文件夹,调字体,如何编译都不知道,考试的前半小时 ...

  7. 【CSP模拟赛】Adore(状压dp 二进制)

    题目描述 小w偶然间见到了一个DAG.这个DAG有m层,第一层只有一个源点,最后一层只有一个汇点,剩下的每一层都有k个节点.现在小w每次可以取反第i(1<i<n-1)层和第i+1层之间的连 ...

  8. CSP模拟赛 number (二分+数位DP)

    题面 给定整数m,km,km,k,求出最小和最大的正整数 nnn 使得 n+1,n+2,-,2nn+1,n+2,-,2nn+1,n+2,-,2n 中恰好有 mmm 个数 在二进制下恰好有 kkk 个 ...

  9. 2013ACM/ICPC亚洲区南京站现场赛-HDU4809(树形DP)

    为了这个题解第一次写东西..(我只是来膜拜爱看touhou的出题人的).. 首先以为对称性质..我们求出露琪诺的魔法值的期望就可以了..之后乘以3就是答案..(话说她那么笨..能算出来么..⑨⑨⑨⑨⑨ ...

随机推荐

  1. LeetCode 459. 重复的子字符串(Repeated Substring Pattern)

    459. 重复的子字符串 459. Repeated Substring Pattern 题目描述 给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成.给定的字符串只含有小写英文字母,并且 ...

  2. 03 CSS听课笔记

    CSS:页面美化和布局控制 1. 概念: Cascading Style Sheets 层叠样式表层叠:多个样式可以作用在同一个html的元素上,同时生效 2. 好处:(1)功能强大(2)将内容展示和 ...

  3. Python08之分支和循环3(for、while循环)

    一.for语句: for 目标 in 表达式: 循环体 i = "湖人总冠军" for each in i: print(each) 湖 人 总 冠 军 for each in i ...

  4. smarty中常用的流程控制逻辑

    if else {if $age > 18} <div>年满十八岁!</div> {else if $age > 16} <div>年满十六岁!< ...

  5. scrapy2——框架简介和抓取流程

    scrapy简介 ​ Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中 scrapy的执行流程 Scrapy主要包括 ...

  6. Python socket编程 (2)--实现文件验证登入

    可以实现从客户端输入账号和密码然后发送到服务器进行验证,实现用户登入校正操作. 服务器: import socket import json server = socket.socket() serv ...

  7. UNIX环境高级编程笔记 目录

    每一章的重点会使用加粗字体 第一章:UNIX基础知识:UNIX体系结构:文件和目录:输入和输出:程序和进程:出错处理:信号:时间值:系统调用和库函数 第三章:文件I/O:文件描述符:文件操作函数:文件 ...

  8. Symmetric Order

    #include<stdio.h> int main() { ; ][]; ) { ;i<=n;i++) { scanf("%s",&str[i]); } ...

  9. Maven学习存档(2)——settings.xml配置

    二.settings.xml配置 2.1 原文 <?xml version="1.0" encoding="UTF-8"?> <!-- Lic ...

  10. skywalking 比较有意思的地方

    获取agent jar包路径的方法: findPath(); private static File findPath() throws AgentPackageNotFoundException { ...