神经网络与机器学习第3版学习笔记

-初学者的笔记,记录花时间思考的各种疑惑

本文主要阐述该书在数学推导上一笔带过的地方。参考学习,在流畅理解书本内容的同时,还能温顾学过的数学知识,达到事半功倍的效果。

第一章 Rosenblatt感知器

1、第32页

1.1 为什么如果第n次迭代时的内积存在符号错误,第n+1次迭代内积的符号就会正确?

已知 $\eta \left( n \right) X^T\left( n \right) X\left( n \right) >\left| W^T\left( n \right) X\left( n \right) \right|$ ······················································①

(1)假设$X\left( n \right) \in \varphi \left( 1 \right) $,即正确的内积结果大于0:$W^{\begin{array}{c} T\\\end{array}}\left( n \right) X\left( n \right) >0$ 。

$\because $第n次迭代时的内积存在符号错误

$\therefore W^{\begin{array}{c} T\\\end{array}}\left( n \right) X\left( n \right) <0$

$\because X\left( n \right) \in \varphi \left( 1 \right) \,\,\land W^{\begin{array}{c} T\\\end{array}}\left( n \right) X\left( n \right) <0$

$\therefore W\left( n+1 \right) =W\left( n \right) +\eta \left( n \right) X\left( n \right) $ //加上一个正数,使下次内积增大(P30的式1.6)

$\therefore W^T\left( n+1 \right) =W^T\left( n \right) +\eta \left( n \right) X^T\left( n \right) $

$\therefore W^T\left( n+1 \right) X\left( n \right) =W^T\left( n \right) X\left( n \right) +\eta \left( n \right) X^T\left( n \right) X\left( n \right) $

又$\because ①\Rightarrow \eta \left( n \right) X^T\left( n \right) X\left( n \right) >-W^T\left( n \right) X\left( n \right) $

$\therefore W^T\left( n+1 \right) X\left( n \right) >0$

即:第n+1次迭代内积的符号正确。

(2)同理可证当“$X\left( n \right) \in \varphi \left( 2 \right) \land W^{\begin{array}{c} T\\\end{array}}\left( n \right) X\left( n \right) >0$”时,第n+1次迭代内积的符号正确。

2、第33页

2.1 关于“Cij

Cij的通俗解释:$x\in \varphi \left( i \right) $ 却错误分类到$\varphi \left( j \right) $的风险。

3、第34页

3.1 为什么C11<C21&C22<C12?

因为错误分类的风险更大。

3.2 最优分类策略的由来。

要使分类策略最优,即:实现风险最小。

所以,最优分类为,使得$\int_{\mathscr{X}1}{A\left( x \right) dx}$最小的A(A为1.27中的代数式)。

那么,把所有使得$A\left( x \right) <0$的x都分配给$\mathscr{X}1$,可使得上式最小。

4、第35页

4.1 式1.33的简化过程

$-\frac{1}{2}\left( X-\mu _1 \right) ^TC^{-1}\left( X-\mu _1 \right) +\frac{1}{2}\left( X-\mu _2 \right) ^TC^{-1}\left( X-\mu _2 \right) $

= $-\frac{1}{2}X^TC^{-1}X+\frac{1}{2}X^TC^{-1}\mu _1+\frac{1}{2}\mu _1^TC^{-1}X-\frac{1}{2}\mu _1^TC^{-1}\mu _1$

$\,\,+\frac{1}{2}X^TC^{-1}X-\frac{1}{2}X^TC^{-1}\mu _2-\frac{1}{2}\mu _2^TC^{-1}X+\frac{1}{2}\mu _2^TC^{-1}\mu _2$

= $\,\,\frac{1}{2}X^TC^{-1}\left( \mu _1-\mu _2 \right) +\frac{1}{2}\left( \mu _1^T-\mu _2^T \right) C^{-1}X$

$+\frac{1}{2}\left( \,\,\mu _2^TC^{-1}\mu _2-\mu _1^TC^{-1}\mu _1 \right) $

= $\,\,\frac{1}{2}X^TC^{-1}\left( \mu _1-\mu _2 \right) +\frac{1}{2}\left( \mu _1-\mu _2 \right) ^TC^{-1}X$

$+\frac{1}{2}\left( \,\,\mu _2^TC^{-1}\mu _2-\mu _1^TC^{-1}\mu _1 \right) $

$\because X,C,\mu _1,\mu _2$都是一维向量,且 一维向量X一维向量=常数

$\therefore X^TC^{-1}\left( \mu _1-\mu _2 \right) =\left( \mu _1-\mu _2 \right) ^TC^{-1}X$

$\therefore $原式=$\,\,\left( \mu _1-\mu _2 \right) ^TC^{-1}X+\frac{1}{2}\left( \,\,\mu _2^TC^{-1}\mu _2-\mu _1^TC^{-1}\mu _1 \right) $

5、第37页

5.1 实验所需要的感知器参数中:$\beta =50$ ?

因为区域A的输入向量的最大欧几里得范数应该为大圆半径10,

所以 $\beta =10^2=100$。

5.2 中文版中对于“权向量大小m=20”的描述,在原版中不存在,可忽略。

6、双月模型的计算机实验

见以下开源代码:

(作者3步迭代就收敛,可我的代码大约需要几百步才能收敛,

由于是随机产生的输入向量,收敛步数应该得看脸,好在都能瞬间完成

并生成可分析数据)

https://gitee.com/none_of_useless/nnalm

思路:

①创建感知器。接受输入向量及初始权值,输出收敛后的权值。

②创建双月模型,生成训练与验证数据。

神经网络与机器学习第3版学习笔记-第1章 Rosenblatt感知器的更多相关文章

  1. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  2. HTML5与CSS3基础教程第八版学习笔记11~15章

    第十一章,用CSS进行布局 开始布局注意事项 1.内容与显示分离 2.布局方法:固定宽度和响应式布局 固定宽度,整个页面和每一栏都有基于像素的宽度 响应式布局也称为流式页面,使用百分数定义宽度 3.浏 ...

  3. 锋利的jQuery第2版学习笔记8~11章

    第8章,用jQuery打造个性网站 网站结构 文件结构 images文件夹用于存放将要用到的图片 styles文件夹用于存放CSS样式表,个人更倾向于使用CSS文件夹 scripts文件夹用于存放jQ ...

  4. 锋利的jQuery第2版学习笔记1~3章

    第1章,认识jQuery 注意:使用的jQuery版本为1.7.1 目前流行的JavaScript库 Prototype(http://www.prototypejs.org),成型早,面向对象的思想 ...

  5. HTML5与CSS3基础教程第八版学习笔记7~10章

    第七章,CSS构造块 CSS里有控制基本格式的属性(font-size,color),有控制布局的属性(position,float),还有决定访问者打印时在哪里换页的打印控制元素.CSS还有很多控制 ...

  6. HTML5与CSS3基础教程第八版学习笔记1~6章

    第一章,网页的构造块 网页主要包括三个部分: 1.文本内容(纯文字) 2.对其他文件的引用:图像,音频,视频,样式表文件,js文件 3.标记:对文本内容进行描述并确保引用正确地工作 注:所有这些成分都 ...

  7. c#高级编程第七版 学习笔记 第三章 对象和类型

    第三章 对象和类型 本章的内容: 类和结构的区别 类成员 按值和按引用传送参数 方法重载 构造函数和静态构造函数 只读字段 部分类 静态类 Object类,其他类型都从该类派生而来 3.1 类和结构 ...

  8. python cookbook第三版学习笔记二十一:利用装饰器强制函数上的类型检查

    在演示实际代码前,先说明我们的目标:能对函数参数类型进行断言,类似下面这样: @typeassert(int, int) ... def add(x, y): ...     return x + y ...

  9. 流畅的python学习笔记第七章:装饰器

    装饰器就如名字一样,对某样事物进行装饰过后然后返回一个新的事物.就好比一个毛坯房,经过装修后,变成了精装房,但是房子还是同样的房子,但是模样变了. 我们首先来看一个函数.加入我要求出函数的运行时间.一 ...

随机推荐

  1. Linux命令的详解

           cat /etc/passwd文件中的每个用户都有一个对应的记录行,记录着这个用户的一下基本属性.该文件对所有用户可读.               /etc/shadow  文件正如他 ...

  2. MySQL-数据库三范式

    数据库三范式 (1)第一范式(1NF): 定义:每一列都是不可分割的原子数据项(强调的是列的原子性): 例:一个表:[联系人](姓名,性别,电话) 如果在实际场景中,一个联系人有家庭电话和公司电话,那 ...

  3. MySQL高级 之 explain执行计划详解(转)

    使用explain关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的,分析你的查询语句或是表结构的性能瓶颈. explain执行计划包含的信息 其中最重要的字段为:i ...

  4. luogu 3702 [SDOI2017]序列计数 矩阵乘法+容斥

    现在看来这道题真的不难啊~ 正着求不好求,那就反着求:答案=总-全不是质数 这里有一个细节要特判:1不是质数,所以在算全不是质数的时候要特判1 code: #include <bits/stdc ...

  5. string字符串类型用scanf读入,printf输出

    #include <iostream> #include <stdio.h> #include <string.h> using namespace std; in ...

  6. P2543 [AHOI2004]奇怪的字符串

    题目描述 输入输出格式 输入格式: 输入文件中包含两个字符串X和Y.当中两字符串非0即1.序列长度均小于9999. 输出格式: X和Y的最长公共子序列长度. 输入输出样例 输入样例#1: 复制 010 ...

  7. 代码 | 自适应大邻域搜索系列之(6) - 判断接受准则SimulatedAnnealing的代码解析

    前言 前面三篇文章对大家来说应该很简单吧?不过轻松了这么久,今天再来看点刺激的.关于判断接受准则的代码.其实,判断接受准则有很多种,效果也因代码而异.今天介绍的是模拟退火的判断接受准则.那么,相关的原 ...

  8. 第九届蓝桥杯(A组填空题)

    1.标题:分数 1/1 + 1/2 + 1/4 + 1/8 + 1/16 + …. 每项是前一项的一半,如果一共有20项, 求这个和是多少,结果用分数表示出来. 类似: 3/2 当然,这只是加了前2项 ...

  9. 前端代码规范-CSS

    CSS规范 一.命名规范BEM(Block Element Modifier) 1.Block name -- 实体名称中的单词之间用连字符分隔(-) HTML <div class=" ...

  10. Java 面向对象(四)

    代码块 什么是代码块 在类中或方法当中 使用 { } 括起来的一段代码,就称它是一个代码块. 在代码块当中定义的变量我们称是局部变量,在外面是没有办法使用的.这里定义的 a 就是一个局部变量. 代码块 ...