Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1098    Accepted Submission(s): 598

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:       
题意:给你n个点(-1e4<x,y<=1e4),判断这n个点能否组成一个正n边形;
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <set>
#define MM(a) memset(a,0,sizeof(a))
typedef long long ll;
typedef unsigned long long ULL;
const double eps = 1e-12;
const int inf = 0x3f3f3f3f;
const double pi=acos(-1);
using namespace std; struct Point{
int x,y;
void read()
{
scanf("%d%d",&x,&y);
}
}p[105],tubao[105]; int dcmp(double a)
{
if(fabs(a)<eps) return 0;
else if(a>0) return 1;
else return -1;
} Point operator-(Point a,Point b)
{
return (Point){a.x-b.x,a.y-b.y};
} double dis(Point a)
{
return sqrt(a.x*a.x+a.y*a.y);
} double cross(Point a,Point b)
{
return a.x*b.y-b.x*a.y;
} double dot(Point a,Point b)
{
return a.x*b.x+a.y*b.y;
} bool cmp(Point a,Point b)
{
if(a.x!=b.x) return a.x<b.x;
else return a.y<b.y;
} int convex_hull(Point *p,int n,Point *tubao)
{
sort(p+1,p+n+1,cmp);
int m=0;
for(int i=1;i<=n;i++)
{
while(m>=2&&cross(p[i]-tubao[m-1],tubao[m]-tubao[m-1])>0) m--;
tubao[++m]=p[i];
}
int k=m;
for(int i=n-1;i>=1;i--)
{
while(m-k>=1&&cross(p[i]-tubao[m-1],tubao[m]-tubao[m-1])>0) m--;
tubao[++m]=p[i];
}
m--;
return m;
} int main()
{
int cas,n;
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++) p[i].read();
int k=convex_hull(p,n,tubao);
tubao[k+1]=tubao[1]; bool flag=true;
double tmp=(n-2.0)*pi/n; for(int i=1;i<=k-1;i++)
{
Point a=tubao[i+1]-tubao[i],b=tubao[i+2]-tubao[i+1];
double cosang=dot(a,b)/(dis(a)*dis(b));
double ang=acos(cosang);
ang=pi-ang;
if(dcmp(ang-tmp)!=0) {flag=false;break;}
}
if(flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}

  分析:主要是借助这道题来分下下计算几何的精度问题,

double型数据精度处理的两种方式

1.相除改为ong long相乘,这种是肯定对的,不会错。

2.dcmp函数,这种比较简单,但是有一定的精度条件,如果角度是1/999999-1/1000000,那么相减起来就是1e-6*1/999999为1e-12级别,这样是可以使用dcmp的,比如本道题,因为1-e4<=x<=1e4,那么最小的角度差是1/(2*1e4-1)-1/2*1e4(最小的角是1/2*1e4,第二小的角度是1/(2*1e4-1))为1e-8级别>1e-12级别,所以可以用dcmp(eps<1e-12)

 

hdu 5533 正n边形判断 精度处理的更多相关文章

  1. HDU - 1317 ~ SPFA正权回路的判断

    题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...

  2. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  3. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  4. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  5. HDU 5533 Dancing Stars on Me( 有趣的计算几何 )

    链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...

  6. TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)

    描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located ...

  7. Android 正 N 边形圆角头像的实现

    卖一下广告,欢迎大家关注我的微信公众号,扫一扫下方二维码或搜索微信号 stormjun94(徐公码字),即可关注. 目前专注于 Android 开发,主要分享 Android开发相关知识和一些相关的优 ...

  8. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  9. HDU 3342 Legal or Not(判断是否存在环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Othe ...

随机推荐

  1. 购物车以php原生cookie实现

    index.php //入口文件 <?php /** * @name index.php * @decs * @author 老猫 <18368091722@163.com> * U ...

  2. Java Volatile关键字(转)

    出处:  Java Volatile关键字 Java的volatile关键字用于标记一个变量“应当存储在主存”.更确切地说,每次读取volatile变量,都应该从主存读取,而不是从CPU缓存读取.每次 ...

  3. L1-025. 正整数A+B 简单复习一下,。

    本题的目标很简单,就是求两个正整数A和B的和,其中A和B都在区间[1,1000].稍微有点麻烦的是,输入并不保证是两个正整数. 输入格式: 输入在一行给出A和B,其间以空格分开.问题是A和B不一定是满 ...

  4. JavaScript内置排序方法sort实现排序操作

    var arr = [10,8,6,9,1,7,2,13,5,1,9]; //sort排序 arr.sort(function(a,b){ //可以改变数组本身的排序方法 return a-b; }) ...

  5. vue-loading图

    父组件给子组件src地址: columns(){ return [ {'title': '图片', 'key': 'img', render(h, {row}){ return h(LoadingIm ...

  6. javascript框架(库)

    javascript框架(库)高级JavaScript编程,尤其是复杂的浏览器差异处理,通常是困难和耗时的.为了响应这些调整,出现了许多javascript(helper)库.这些JavaScript ...

  7. ES6 class 继承 与面向对象封装开发简单实例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 常见DML语句汇总

    DML操作是指对数据中表记录的操作,主要包括表记录的插入(insert).更新(update).删除(delete)和查询(select),是开发人员日常使用最频繁的操作,下面依次对它们进行介绍. ( ...

  9. yocto 编译C程序

    1. 找到编译器位置所在(相关设置参考/opt/poky/1.7/environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi文件) poky安装在 ...

  10. deep_learning_Function_ lambda函数详解

    这里总结了关于 Python 中的 lambda 函数的“一个语法,三个特性,四个用法”. 一个语法: 在 Python 中,lambda 函数的语法是唯一的.其形式如下: lambda argume ...