BZOJ 4031: [HEOI2015]小Z的房间 (矩阵树定理 板题)
背结论 : 度-邻
CODE1
O(n3logn)O(n^3logn)O(n3logn)
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
template<class T>inline void read(T &num) {
register char ch; register int flg = 1;
while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
for(num=0; isdigit(ch); num=num*10+ch-'0', ch=getchar());
num *= flg;
}
const int MAXN = 85;
const int mod = 1e9;
int n, m, tot, id[10][10];
int a[MAXN][MAXN], d[MAXN][MAXN], g[MAXN][MAXN];
char s[10];
inline void link(int u, int v) {
++d[u][u], ++d[v][v];
++g[u][v], ++g[v][u];
}
inline int Gauss(int N) { //高斯消元成上三角
int ans = 1;
for(int i = 1; i <= N; ++i) {
for(int k = i+1; k <= N; ++k)
while(a[k][i]) { //这里有一个log
int d = a[i][i] / a[k][i];
for(int j = i; j <= N; ++j)
a[i][j] = ((a[i][j] - 1ll * d * a[k][j] % mod) % mod + mod) % mod;
swap(a[i], a[k]), ans = -ans; //注意每交换两行都要取反
}
ans = (1ll * ans * a[i][i] % mod + mod) % mod;
}
return ans;
}
int main() {
read(n), read(m);
for(int i = 1; i <= n; ++i) {
scanf("%s", s+1);
for(int j = 1; j <= m; ++j)
if(s[j] != '*') {
id[i][j] = ++tot;
if(id[i-1][j]) link(tot, id[i-1][j]);
if(id[i][j-1]) link(tot, id[i][j-1]);
}
}
for(int i = 1; i < tot; ++i)
for(int j = 1; j < tot; ++j)
a[i][j] = d[i][j] - g[i][j];
printf("%d\n", (Gauss(tot-1) + mod) % mod);
}
CODE2
O(n3+n2logn)→O(n3)O(n^3+n^2logn)\to O(n^3)O(n3+n2logn)→O(n3)
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
template<class T>inline void read(T &num) {
register char ch; register int flg = 1;
while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
for(num=0; isdigit(ch); num=num*10+ch-'0', ch=getchar());
num *= flg;
}
const int MAXN = 85;
const int mod = 1e9;
int n, m, tot, id[10][10];
int a[MAXN][MAXN], d[MAXN][MAXN], g[MAXN][MAXN];
char s[10];
inline void link(int u, int v) {
++d[u][u], ++d[v][v];
++g[u][v], ++g[v][u];
}
inline void kill(int a, int b, int &ii, int &ik, int &ki, int &kk, int &sign) {
ii = 1, ik = 0;
ki = 0, kk = 1;
sign = 1;
while(b) {
(ii -= a/b * ki) %= mod;
(ik -= a/b * kk) %= mod;
a -= a/b * b;
swap(a, b);
swap(ii, ki);
swap(ik, kk);
sign = -sign;
}
}
inline int Gauss(int N) {
int ans = 1, ii, ik, ki, kk, sign;
for(int i = 1; i <= N; ++i) {
for(int k = i+1; k <= N; ++k) if(a[k][i]) {
kill(a[i][i], a[k][i], ii, ik, ki, kk, sign); //先把系数算出来
ans *= sign;
for(int j = i; j <= N; ++j) {
int _aij = (1ll * a[i][j] * ii + 1ll * a[k][j] * ik) % mod;
int _akj = (1ll * a[i][j] * ki + 1ll * a[k][j] * kk) % mod;
a[i][j] = _aij, a[k][j] = _akj;
}
}
ans = 1ll * ans * a[i][i] % mod;
}
return ans;
}
int main() {
read(n), read(m);
for(int i = 1; i <= n; ++i) {
scanf("%s", s+1);
for(int j = 1; j <= m; ++j)
if(s[j] != '*') {
id[i][j] = ++tot;
if(id[i-1][j]) link(tot, id[i-1][j]);
if(id[i][j-1]) link(tot, id[i][j-1]);
}
}
for(int i = 1; i < tot; ++i)
for(int j = 1; j < tot; ++j)
a[i][j] = d[i][j] - g[i][j];
printf("%d\n", (Gauss(tot-1) + mod) % mod);
}
BZOJ 4031: [HEOI2015]小Z的房间 (矩阵树定理 板题)的更多相关文章
- BZOJ 4031: [HEOI2015]小Z的房间 [矩阵树定理 行列式取模]
http://www.lydsy.com/JudgeOnline/problem.php?id=4031 裸题........ 问题在于模数是$10^9$ 我们发现消元的目的是让一个地方为0 辗转相除 ...
- 【bzoj4031】[HEOI2015]小Z的房间 矩阵树定理
题目描述 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一 ...
- bzoj4031 [HEOI2015]小Z的房间——矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4031 矩阵树定理的模板题(第一次的矩阵树定理~): 有点细节,放在注释里了. 代码如下: # ...
- BZOJ 4031 [HEOI2015]小Z的房间(Matrix-Tree定理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4031 [题目大意] 你突然有了一个大房子,房子里面有一些房间. 事实上,你的房子可以看 ...
- BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...
- [HEOI2015]小Z的房间(矩阵树定理学习笔记)
题目描述 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一 ...
- [HEOI2015] 小Z的房间 - 矩阵树定理
#include <bits/stdc++.h> using namespace std; #define int long long const int N = 105; const i ...
- bzoj 4031: 小Z的房间 矩阵树定理
bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时 ...
- bzoj 4031: [HEOI2015]小Z的房间 轮廓线dp
4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 98 Solved: 29[Submit][Status] ...
随机推荐
- 超级实用的 Java 工具类
超级实用的 Java 工具类 在Java中,工具类定义了一组公共方法,这篇文章将介绍Java中使用最频繁及最通用的Java工具类.以下工具类.方法按使用流行度排名,参考数据来源于Github上随机选取 ...
- 27-Perl 进程管理
1.Perl 进程管理Perl 中你可以以不同的方法来创建进程.本教程将讨论一些进程的管理方法. 你可以使用特殊变量 $$ 或 $PROCESS_ID 来获取进程 ID. %ENV 哈希存放了父进程, ...
- Android获取网络时间的方法
一.通过免费或者收费的API接口获取 1.免费 QQ:http://cgi.im.qq.com/cgi-bin/cgi_svrtime 淘宝:http://api.m.taobao.com/rest/ ...
- ASP.NET Core MVC里面Razor如何获取URL参数
原文:ASP.NET Core MVC里面Razor如何获取URL参数 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https:// ...
- vue.js对列表进行编辑未保存随时变更
1.不要建立在同一vm对象下 2.使用深拷贝$.extend(true, vm.model, obj); 3.开新标签页
- O055、Detach Volume 操作
参考https://www.cnblogs.com/CloudMan6/p/5636510.html 本节我们开始学习 Volume Detach 操作,就是将Volume从Instance上 ...
- java文件上传复制等功能
package com.sitech.message.controller.task;import java.io.File;//引入类 import java.io.FileInputStream; ...
- Extjs中,Vo对象中的属性无法在data中获取的解决方法
store.getById(data.data.id).raw.redpackid
- ASP.NET数据库连接类(SqlDBHelper)
第一步:创建一个名为SqlDBHelper的类,用来作为联通数据库和系统之间的桥梁. 第二步:引入命名空间,如果System.Configuration.System.Transcations这两个命 ...
- (转)Android刷机的一些知识整理
刷机概述刷机原因刷机可以升级和破解固件(在Android上:即可以升级系统,更改系统,获取Root权限):破解系统的原因①安装第三方软件不需要签名,不受证书的束缚:②修改系统的文件,达到系统的瘦身,以 ...