就是使用ES提供的aggs语法结果,使用DSL搜索的语法,实现聚合数据的统计,查询。
ES中,如果新增document数据的时候,对应的index和type不存在,则自动创建。

1 准备源数据

PUT /products_index/phone_type/1
{
"name":"IPHONE 8",
"remark":"64G",
"price":548800,
"producer":"APPLE",
"tags" : [ "64G", "red color", "Nano SIM" ]
}
PUT /products_index/phone_type/2
{
"name":"IPHONE 8",
"remark":"64G",
"price":548800,
"producer":"APPLE",
"tags" : [ "64G", "golden color", "Nano SIM" ]
}
PUT /products_index/phone_type/3
{
"name":"IPHONE 8 PLUS",
"remark":"128G",
"price":748800,
"producer":"APPLE",
"tags" : [ "128G", "red color", "Nano SIM" ]
}
PUT /products_index/phone_type/4
{
"name":"IPHONE 8 PLUS",
"remark":"256G",
"price":888800,
"producer":"APPLE",
"tags" : [ "256G", "golden color", "Nano SIM" ]
}

将文本类型的field的fielddata设置为true。用于设置ES中对倒排索引的设置,将倒排索引内容重设一份正排索引,并提供内存存储计算能力。

正排索引,类似数据库中的普通索引。依赖倒排索引中的数据,不做二次解析,将倒排索引解析的数据信息,建立一个索引,索引用于内存计算,如:分析,分组,字符串排序等。

PUT /products_index/_mapping/phone_type
{
"properties" : {
"tags" : {
"type" : "text",
"fielddata" : true
}
}
}

  

2 聚合统计
计算每个tag中的Document数量
terms : 检索词组的,安装标准词组分组,统计数据document的数量。类似数据库中的count。
聚合搜索,语法的大体结构和DSL搜索语句类似。类似数据库中的count。 Select count(*) from table

GET /products_index/phone_type/_search
{
"size" : 0, # 查多少数据。
"aggs" : { # 开始聚合,类似query,是一个命令。或api
"group_by_tags":{ # 给聚合数据,加一个命名。自定义。
"terms" : { # 是一个聚合api,类似数据库中的聚合函数。解析某字段中的词条。如:a字段的值是 test field.假设解析后词条为test和field。那么就是根据a字段的解析词条,test和field来统计每个数据在多少个document中存在。
"field" : "tags"
}
}
}
}

"size":0代表显示多少计算源数据Document

3 增加搜索匹配条件的聚合统计
搜索名称中包含PLUS的Document,并计算每个tag中的Document数量。统计是search中的一部分。一般在DSL query中使用。所以经常和条件搜索配合完成统计。

GET /products_index/phone_type/_search
{
"size" : 0,
"query" : {
"match" : { "name" : "PLUS" }
},
"aggs" : {
"group_by_tags":{
"terms" : { "field" : "tags" }
}
}
}

  

4 聚合后实现计算
聚合嵌套

# 计算name中包含plus的document数据中的price字段平均值。
GET /products_index/phone_type/_search
{
"query": {
"match": {
"name": "plus"
}
},
"aggs": {
"avg_by_price" : {
"avg": {
"field": "price"
}
}
}
} # 搜索包含plus的document,根据tags做词条统计,在统计结果中,计算price平均值。聚合是可以嵌套的,内层聚合是依托于外层聚合的结果之上,实现聚合计算的。
GET /products_index/phone_type/_search
{
"query": {
"match": {
"name": "plus"
}
},
"aggs": {
"group_by_tags":{
"terms": {
"field": "tags"
},
"aggs": {
"avg_by_price": {
"avg": {
"field": "price"
}
}
}
}
}
}

  

5 聚合的排序
类似SQL - select * from group by .. order by ..
聚合aggs中如果使用order排序的话,要求排序字段必须是一个aggs聚合相关的字段。聚合相关字段代表的含义是:当前聚合的子聚合命名。如:外部聚合是使用terms实现的聚合,命名为group_by_tags,其内层聚合是使用avg计算平均值,聚合名称为avg_by_price,那么avg_by_price称为聚合相关字段。
计算每个tag中的Document数据的price平均值,并根据price字段数据排序

GET /products_index/phone_type/_search
{
"size" : 0,
"aggs" : {
"group_by_tags" : {
"terms" : { "field" : "tags", "order":{"avg_price" : "desc"} },
"aggs" : {
"avg_price" : {
"avg" : { "field" : "price" }
}
}
}
}
}

  

6 范围分组并计算
使用price取值范围分组,再计算分组Document中price的平均值

GET /products_index/phone_type/_search
{
"query": {
"match_all": {}
},
"_source": "price",
"aggs": {
"range_by_price": {
"range": {
"field": "price",
"ranges": [
{
"from": 500000,
"to": 600000
},
{
"from": 600001,
"to": 800000
},
{
"from": 800001,
"to": 1000000
}
]
},
"aggs": {
"avg_by_price": {
"avg": {
"field": "price"
}
}
}
}
}
}

Elastic Search的聚合搜索的更多相关文章

  1. 教你用Elastic Search:运行第一条Hello World搜索命令

    摘要:Elastic Search可实时对数据库进行全文检索.处理同义词.从同样的数据中生成分析和聚合数据. 本文分享自华为云社区<Elastic Search入门(一): 简介,安装,运行第一 ...

  2. Elastic Search快速上手(3):搜索

    前言 存储好数据之后,便可通过RESTful API进行搜索. 详细文档可参考: --简单搜索https://www.elastic.co/guide/cn/elasticsearch/guide/c ...

  3. Elastic Search对Document的搜索

    在ES中使用的重点.ES中存储的数据.核心就是为了提供全文搜索能力的.搜索功能非常重要.多练. 1 query string searchsearch的参数都是类似http请求头中的字符串参数提供搜索 ...

  4. SpringMVC项目使用elastic search搜索

    项目需要,引入了elastic search(后续简称es),后面将介绍本地对es的安装,使用以及java连接es查询的整个过程. 1.es索引字段建立与修改,以curl新增一个索引字段示例 curl ...

  5. Elastic Search笔记

    目录 1.简介 2.概念和工具使用 2.1 基本概念 2.2 使用kibana 3.操作索引和数据 2.3 索引 2.4 索引映射到文档 2.5 新增数据 2.6 修改数据 2.7 删除数据 4. 搜 ...

  6. elastic search(以下简称es)

    参考博客园https://www.cnblogs.com/Neeo/p/10304892.html#more 如何学好elasticsearch 除了万能的百度和Google 之外,我们还有一些其他的 ...

  7. Elastic Search 上市了,市值翻倍,这群人财务自由了!

    国庆长假,大部分人还深浸在风花雪月之中,而就在昨天(美国时间10月5号),我们 Java 程序员所熟知的大名鼎鼎的 Elastic Search 居然在美国纽约证券交易所上市了! 当说到搜索时,大部分 ...

  8. [elastic search][redis] 初试 ElasticSearch / redis

    现有项目组,工作需要. http://www.cnblogs.com/xing901022/p/4704319.html Elastic Search权威指南(中文版) https://es.xiao ...

  9. elastic search 日期为string类型导致视图无法展示时间的解决办法

    尝试将结构化的json数据发送到es(elastic search)上,然后创建视图,这样就能以小时维度查看数据,直接使用post发送到es后,创建索引,结果提示 没有date类型的字段(field) ...

随机推荐

  1. ACM之路(13)—— 树型dp

    最近刷了一套(5题)的树型dp题目:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=116767#overview,算是入了个门,做下总结. ...

  2. 用HQL自己写了个update!!!

    原来代码: public void updateSj(String jsly, Integer zu,String sj) { if (!StringUtils.isBlank(jsly)&& ...

  3. Leetcode题目48.旋转图像(中等)

    题目描述: 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示例 1 ...

  4. iOS (APP)进程间8中常用通信方式总结

    1 URL Scheme 2 Keychain 3 UIPasteboard 4 UIDocumentInteractionController 5 local socket 6 AirDrop 7 ...

  5. mysql连表操作是先连表还是先查询条件

    mysql连表操作是先连表还是先查询条件 一.总结 一句话总结: 连表操作时:先根据查询条件和查询字段确定驱动表,确定驱动表之后就可以开始连表操作了,然后再在缓存结果中根据查询条件找符合条件的数据 1 ...

  6. AB窗体互传参数本质

    一.找了好几个,都不靠谱,不是说不靠谱,自己感觉太繁琐,根本就是本窗体的属性(对象)的传递,1实例化2把实例化后的窗体属性=本窗体的对象 二.传递的的时候都是在互相引用的时候传递,推荐的个人认为最简单 ...

  7. R-CNN论文阅读摘要

    论文链接: https://arxiv.org/pdf/1311.2524.pdf Abstract Our approach combines two key insights: (1) one c ...

  8. parted对大容量磁盘进行分区

    Linux系统中MBR与GPT的区别 主引导记录(Master Boot Record , MBR)是指一个存储设备的开头 512 字节.它包含操作系统的引导器和存储设备的分区表. 全局唯一标识分区表 ...

  9. React里单页面div自适应浏览器高度占满屏幕

    可以用绝对定位方式,让div占满屏幕,css样式如下: height: 100%; width: 100%; position: absolute; top: 0px; bottom: 0px;

  10. 关于微信XML解析存在的安全问题

    ---恢复内容开始--- 前言: 最近微信官方提出:微信支付商户,最近暴露的XML外部实体注入漏洞(XML External Entity Injection,简称 XXE),该安全问题是由XML组件 ...