注,reduce之前已经shuff。

mapper.py

#!/usr/bin/env python
"""mapper.py"""

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # split the line into words
    words = line.split()
    # increase counters
    for word in words:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        print '%s\t%s' % (word, 1)

reducer.py

#!/usr/bin/env python
"""reducer.py"""

from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

# input comes from STDIN
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()

    # parse the input we got from mapper.py
    word, count = line.split('\t', 1)

    # convert count (currently a string) to int
    try:
        count = int(count)
    except ValueError:
        # count was not a number, so silently
        # ignore/discard this line
        continue

    # this IF-switch only works because Hadoop sorts map output
    # by key (here: word) before it is passed to the reducer
    if current_word == word:
        current_count += count
    else:
        if current_word:
            # write result to STDOUT
            print '%s\t%s' % (current_word, current_count)
        current_count = count
        current_word = word

# do not forget to output the last word if needed!
if current_word == word:
    print '%s\t%s' % (current_word, current_count)

Improved Mapper and Reducer code: using Python iterators and generators

mapper.py

#!/usr/bin/env python
"""A more advanced Mapper, using Python iterators and generators."""

import sys

def read_input(file):
    for line in file:
        # split the line into words
        yield line.split()

def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read_input(sys.stdin)
    for words in data:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        for word in words:
            print '%s%s%d' % (word, separator, 1)

if __name__ == "__main__":
    main()

reducer.py

#!/usr/bin/env python
"""A more advanced Reducer, using Python iterators and generators."""

from itertools import groupby
from operator import itemgetter
import sys

def read_mapper_output(file, separator='\t'):
    for line in file:
        yield line.rstrip().split(separator, 1)

def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read_mapper_output(sys.stdin, separator=separator)
    # groupby groups multiple word-count pairs by word,
    # and creates an iterator that returns consecutive keys and their group:
    #   current_word - string containing a word (the key)
    #   group - iterator yielding all ["<current_word>", "<count>"] items
    for current_word, group in groupby(data, itemgetter(0)):
        try:
            total_count = sum(int(count) for current_word, count in group)
            print "%s%s%d" % (current_word, separator, total_count)
        except ValueError:
            # count was not a number, so silently discard this item
            pass

if __name__ == "__main__":
    main()

从groupby 理解mapper-reducer的更多相关文章

  1. hadoop2.7之Mapper/reducer源码分析

    一切从示例程序开始: 示例程序 Hadoop2.7 提供的示例程序WordCount.java package org.apache.hadoop.examples; import java.io.I ...

  2. hadoop mapper reducer

    Local模式运行MR流程------------------------- 1.创建外部Job(mapreduce.Job),设置配置信息 2.通过jobsubmitter将job.xml + sp ...

  3. Mapper 与 Reducer 解析

    1 . 旧版 API 的 Mapper/Reducer 解析 Mapper/Reducer 中封装了应用程序的数据处理逻辑.为了简化接口,MapReduce 要求所有存储在底层分布式文件系统上的数据均 ...

  4. Mapper类/Reducer类中的setup方法和cleanup方法以及run方法的介绍

    在hadoop的源码中,基类Mapper类和Reducer类中都是只包含四个方法:setup方法,cleanup方法,run方法,map方法.如下所示: 其方法的调用方式是在run方法中,如下所示: ...

  5. JVM | 第1部分:自动内存管理与性能调优《深入理解 Java 虚拟机》

    目录 前言 1. 自动内存管理 1.1 JVM运行时数据区 1.2 Java 内存结构 1.3 HotSpot 虚拟机创建对象 1.4 HotSpot 虚拟机的对象内存布局 1.5 访问对象 2. 垃 ...

  6. hadoop之mapper类妙用

    1. Mapper类 首先 Mapper类有四个方法: (1) protected void setup(Context context) (2) Protected void map(KEYIN k ...

  7. Mybatis 入门到理解篇

    MyBatis         MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code, ...

  8. 【转】Hive配置文件中配置项的含义详解(收藏版)

    http://www.aboutyun.com/thread-7548-1-1.html 这里面列出了hive几乎所有的配置项,下面问题只是说出了几种配置项目的作用.更多内容,可以查看内容问题导读:1 ...

  9. 为你揭秘知乎是如何搞AI的——窥大厂 | 数智方法论第1期

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 数智物语(公众号ID:decision_engine)出品 策划.编写:卷毛雅各布 「我们相信,在垃圾 ...

随机推荐

  1. centos umount 卸载出错

    target is busy. (In some cases useful info about processes that use the device ) or fuser()) 解决 fuse ...

  2. Django_静态文件的配置(STATIC_URL)

    静态文件,常用在head中,可动态的去检索settings里面的STATIC_URL = '/static/',然后做拼接settings.py中 STATIC_URL = '/static9/' # ...

  3. java多线程实现多客户端socket通信

    一.服务端 package com.czhappy.hello.socket; import java.io.IOException; import java.net.InetAddress; imp ...

  4. Git 和 SVN 存储方式的差异对比

    Git git 对于一个文件的修改存储的是一个快照,就是说针对文件1,修改之后,生成文件2,文件2中包含文件的1的内容,如果当文件1不存在,版本回退也就不管用了. SVN SVN 存储的是对文件的差异 ...

  5. 19暑假多校训练第一场-J-Fraction Comparision(大数运算)

    链接:https://ac.nowcoder.com/acm/contest/881/J来源:牛客网 题目描述 Bobo has two fractions xaxa and ybyb. He wan ...

  6. GridView取不到值的问题总结

    在ASP.NET开发过程中,使用GridView进行数据表现的时候遇到过两次取不到值的问题.分别是初学的时候与 用了一年多以后.出现的问题并不是身边么高深的技术,但是可能会经常遇到,所以这里我做一下总 ...

  7. netty 实现心跳检查--断开重连--通俗易懂

    一.心跳介绍 网络中的接收和发送数据都是使用操作系统中的SOCKET进行实现.但是如果此套接字已经断开,那发送数据和接收数据的时候就一定会有问题. 1.心跳机制: 是服务端和客户端定时的发送一个心跳包 ...

  8. PHP Math常量

    常量名 常量名 常量值 PHP M_E e 2.7182818284590452354 4 M_EULER Euler 常量 0.57721566490153286061 5.2.0 M_LNPI l ...

  9. 并查集问题hdu 1232

    Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道 ...

  10. C# SpinLock用法。

    class Program { static void Main(string[] args) { ; ]; Stopwatch sp = new Stopwatch(); sp.Start(); / ...