linux 内核网络数据包接收流程
转:https://segmentfault.com/a/1190000008836467
本文将介绍在Linux系统中,数据包是如何一步一步从网卡传到进程手中的。
如果英文没有问题,强烈建议阅读后面参考里的两篇文章,里面介绍的更详细。
本文只讨论以太网的物理网卡,不涉及虚拟设备,并且以一个UDP包的接收过程作为示例.
本示例里列出的函数调用关系来自于kernel 3.13.0,如果你的内核不是这个版本,函数名称和相关路径可能不一样,但背后的原理应该是一样的(或者有细微差别)
网卡到内存
网卡需要有驱动才能工作,驱动是加载到内核中的模块,负责衔接网卡和内核的网络模块,驱动在加载的时候将自己注册进网络模块,当相应的网卡收到数据包时,网络模块会调用相应的驱动程序处理数据。
下图展示了数据包(packet)如何进入内存,并被内核的网络模块开始处理:
+-----+
| | Memroy
+--------+ 1 | | 2 DMA +--------+--------+--------+--------+
| Packet |-------->| NIC |------------>| Packet | Packet | Packet | ...... |
+--------+ | | +--------+--------+--------+--------+
| |<--------+
+-----+ |
| +---------------+
| |
3 | Raise IRQ | Disable IRQ
| 5 |
| |
↓ |
+-----+ +------------+
| | Run IRQ handler | |
| CPU |------------------>| NIC Driver |
| | 4 | |
+-----+ +------------+
|
6 | Raise soft IRQ
|
↓
1: 数据包从外面的网络进入物理网卡。如果目的地址不是该网卡,且该网卡没有开启混杂模式,该包会被网卡丢弃。
2: 网卡将数据包通过DMA的方式写入到指定的内存地址,该地址由网卡驱动分配并初始化。注: 老的网卡可能不支持DMA,不过新的网卡一般都支持。
3: 网卡通过硬件中断(IRQ)通知CPU,告诉它有数据来了
4: CPU根据中断表,调用已经注册的中断函数,这个中断函数会调到驱动程序(NIC Driver)中相应的函数
5: 驱动先禁用网卡的中断,表示驱动程序已经知道内存中有数据了,告诉网卡下次再收到数据包直接写内存就可以了,不要再通知CPU了,这样可以提高效率,避免CPU不停的被中断。
6: 启动软中断。这步结束后,硬件中断处理函数就结束返回了。由于硬中断处理程序执行的过程中不能被中断,所以如果它执行时间过长,会导致CPU没法响应其它硬件的中断,于是内核引入软中断,这样可以将硬中断处理函数中耗时的部分移到软中断处理函数里面来慢慢处理。
内核的网络模块
软中断会触发内核网络模块中的软中断处理函数,后续流程如下
+-----+
17 | |
+----------->| NIC |
| | |
|Enable IRQ +-----+
|
|
+------------+ Memroy
| | Read +--------+--------+--------+--------+
+--------------->| NIC Driver |<--------------------- | Packet | Packet | Packet | ...... |
| | | 9 +--------+--------+--------+--------+
| +------------+
| | | skb
Poll | 8 Raise softIRQ | 6 +-----------------+
| | 10 |
| ↓ ↓
+---------------+ Call +-----------+ +------------------+ +--------------------+ 12 +---------------------+
| net_rx_action |<-------| ksoftirqd | | napi_gro_receive |------->| enqueue_to_backlog |----->| CPU input_pkt_queue |
+---------------+ 7 +-----------+ +------------------+ 11 +--------------------+ +---------------------+
| | 13
14 | + - - - - - - - - - - - - - - - - - - - - - - +
↓ ↓
+--------------------------+ 15 +------------------------+
| __netif_receive_skb_core |----------->| packet taps(AF_PACKET) |
+--------------------------+ +------------------------+
|
| 16
↓
+-----------------+
| protocol layers |
+-----------------+
7: 内核中的ksoftirqd进程专门负责软中断的处理,当它收到软中断后,就会调用相应软中断所对应的处理函数,对于上面第6步中是网卡驱动模块抛出的软中断,ksoftirqd会调用网络模块的net_rx_action函数
8: net_rx_action调用网卡驱动里的poll函数来一个一个的处理数据包
9: 在pool函数中,驱动会一个接一个的读取网卡写到内存中的数据包,内存中数据包的格式只有驱动知道
10: 驱动程序将内存中的数据包转换成内核网络模块能识别的skb格式,然后调用napi_gro_receive函数
11: napi_gro_receive会处理GRO相关的内容,也就是将可以合并的数据包进行合并,这样就只需要调用一次协议栈。然后判断是否开启了RPS,如果开启了,将会调用enqueue_to_backlog
12: 在enqueue_to_backlog函数中,会将数据包放入CPU的softnet_data结构体的input_pkt_queue中,然后返回, 如果input_pkt_queue满了的话,该数据包将会被丢弃,queue的大小可以通过net.core.netdev_max_backlog来 配置
13: CPU会接着在自己的软中断上下文中处理自己input_pkt_queue里的网络数据(调用__netif_receive_skb_core)
14: 如果没开启RPS,napi_gro_receive会直接调用__netif_receive_skb_core
15: 看是不是有AF_PACKET类型的socket(也就是我们常说的原始套接字),如果有的话,拷贝一份数据给它。tcpdump抓包就是抓的这里的包。
16: 调用协议栈相应的函数,将数据包交给协议栈处理。
17: 待内存中的所有数据包被处理完成后(即poll函数执行完成),启用网卡的硬中断,这样下次网卡再收到数据的时候就会通知CPU
enqueue_to_backlog函数也会被netif_rx函数调用,而netif_rx正是lo设备发送数据包时调用的函数
协议栈
IP层
由于是UDP包,所以第一步会进入IP层,然后一级一级的函数往下调:
|
|
↓ promiscuous mode &&
+--------+ PACKET_OTHERHOST (set by driver) +-----------------+
| ip_rcv |-------------------------------------->| drop this packet|
+--------+ +-----------------+
|
|
↓
+---------------------+
| NF_INET_PRE_ROUTING |
+---------------------+
|
|
↓
+---------+
| | enabled ip forword +------------+ +----------------+
| routing |-------------------->| ip_forward |------->| NF_INET_FOWARD |
| | +------------+ +----------------+
+---------+ |
| |
| destination IP is local ↓
↓ +---------------+
+------------------+ | dst_output_sk |
| ip_local_deliver | +---------------+
+------------------+
|
|
↓
+------------------+
| NF_INET_LOCAL_IN |
+------------------+
|
|
↓
+-----------+
| UDP layer |
+-----------+
ip_rcv: ip_rcv函数是IP模块的入口函数,在该函数里面,第一件事就是将垃圾数据包(目的mac地址不是当前网卡,但由于网卡设置了混杂模式而被接收进来)直接丢掉,然后调用注册在NF_INET_PRE_ROUTING上的函数
NF_INET_PRE_ROUTING: netfilter放在协议栈中的钩子,可以通过iptables来注入一些数据包处理函数,用来修改或者丢弃数据包,如果数据包没被丢弃,将继续往下走
routing: 进行路由,如果是目的IP不是本地IP,且没有开启ip forward功能,那么数据包将被丢弃,如果开启了ip forward功能,那将进入ip_forward函数
ip_forward: ip_forward会先调用netfilter注册的NF_INET_FORWARD相关函数,如果数据包没有被丢弃,那么将继续往后调用dst_output_sk函数
dst_output_sk: 该函数会调用IP层的相应函数将该数据包发送出去,同下一篇要介绍的数据包发送流程的后半部分一样。
ip_local_deliver:如果上面routing的时候发现目的IP是本地IP,那么将会调用该函数,在该函数中,会先调用NF_INET_LOCAL_IN相关的钩子程序,如果通过,数据包将会向下发送到UDP层
UDP层
|
|
↓
+---------+ +-----------------------+
| udp_rcv |----------->| __udp4_lib_lookup_skb |
+---------+ +-----------------------+
|
|
↓
+--------------------+ +-----------+
| sock_queue_rcv_skb |----->| sk_filter |
+--------------------+ +-----------+
|
|
↓
+------------------+
| __skb_queue_tail |
+------------------+
|
|
↓
+---------------+
| sk_data_ready |
+---------------+
udp_rcv: udp_rcv函数是UDP模块的入口函数,它里面会调用其它的函数,主要是做一些必要的检查,其中一个重要的调用是 __udp4_lib_lookup_skb,该函数会根据目的IP和端口找对应的socket,如果没有找到相应的socket,那么该数据包将会被丢 弃,否则继续
sock_queue_rcv_skb: 主要干了两件事,一是检查这个socket的receive buffer是不是满了,如果满了的话,丢弃该数据包,然后就是调用sk_filter看这个包是否是满足条件的包,如果当前socket上设置了filter,且该包不满足条件的话,这个数据包也将被丢弃(在Linux里面,每个socket上都可以像tcpdump里面一样定义filter,不满足条件的数据包将会被丢弃)
__skb_queue_tail: 将数据包放入socket接收队列的末尾
sk_data_ready: 通知socket数据包已经准备好
调用完sk_data_ready之后,一个数据包处理完成,等待应用层程序来读取,上面所有函数的执行过程都在软中断的上下文中。
socket
应用层一般有两种方式接收数据,一种是recvfrom函数阻塞在那里等着数据来,这种情况下当socket收到通知后,recvfrom就会被唤 醒,然后读取接收队列的数据;另一种是通过epoll或者select监听相应的socket,当收到通知后,再调用recvfrom函数去读取接收队列 的数据。两种情况都能正常的接收到相应的数据包。
结束语
了解数据包的接收流程有助于帮助我们搞清楚我们可以在哪些地方监控和修改数据包,哪些情况下数据包可能被丢弃,为我们处理网络问题提供了一些参考, 同时了解netfilter中相应钩子的位置,对于了解iptables的用法有一定的帮助,同时也会帮助我们后续更好的理解Linux下的网络虚拟设 备。
在接下来的几篇文章中,将会介绍Linux下的网络虚拟设备和iptables。
linux 内核网络数据包接收流程的更多相关文章
- Linux内核网络数据包处理流程
Linux内核网络数据包处理流程 from kernel-4.9: 0. Linux内核网络数据包处理流程 - 网络硬件 网卡工作在物理层和数据链路层,主要由PHY/MAC芯片.Tx/Rx FIFO. ...
- Linux内核二层数据包接收流程
本文主要讲解了Linux内核二层数据包接收流程,使用的内核的版本是2.6.32.27 为了方便理解,本文采用整体流程图加伪代码的方式从内核高层面上梳理了二层数据包接收的流程,希望可以对大家有所帮助.阅 ...
- Linux内核 网络数据接收流程图
各层主要函数以及位置功能说明: 1)sock_read:初始化msghdr{}的结构类型变量msg,并且将需要接收的数据存放的地址传给msg.msg_iov->iov_base. ...
- Linux网络数据包的揭秘以及常见的调优方式总结
https://mp.weixin.qq.com/s/boRWlx1R7TX0NLuI2sZBfQ 作为业务 SRE,我们所运维的业务,常常以 Linux+TCP/UDP daemon 的形式对外提供 ...
- 【驱动】网卡驱动·linux内核网络分层结构
Preface Linux内核对网络驱动程序使用统一的接口,并且对于网络设备采用面向对象的思想设计. Linux内核采用分层结构处理网络数据包.分层结构与网络协议的结构匹配,既能简化数据包处理流程 ...
- [转]linux内核网络分层结构
Preface Linux内核对网络驱动程序使用统一的接口,并且对于网络设备采用面向对象的思想设计. Linux内核采用分层结构处理网络数据包.分层结构与网络协议的结构匹配,既能简化数据包处理流程 ...
- Linux 网络设备驱动开发(一) —— linux内核网络分层结构
Preface Linux内核对网络驱动程序使用统一的接口,并且对于网络设备采用面向对象的思想设计. Linux内核采用分层结构处理网络数据包.分层结构与网络协议的结构匹配,既能简化数据包处理流程,又 ...
- 数据包接收系列 — NAPI的原理和实现
本文主要内容:简单分析NAPI的原理和实现. 内核版本:2.6.37 Author:zhangskd @ csdn 概述 NAPI是linux新的网卡数据处理API,据说是由于找不到更好的名字,所以就 ...
- 一个C++版的网络数据包解析策略
C++版的网络数据包解析策略(升级版) 一.数据包格式形如下图 二.代码 int ReceiveFromRemoteEndPoint() { int nPackageDataLength = ; ch ...
随机推荐
- JAVA 基础编程练习题10 【程序 10 自由落体】
10 [程序 10 自由落体] 题目:一球从 100 米高度自由落下,每次落地后反跳回原高度的一半:再落下,求它在 第 10 次落地时, 共经过多少米?第 10 次反弹多高? package cska ...
- VMware workstation安装Windows Server 2012 R2步骤详解(附下载链接)
话不多说,直接上链接.所需工具: 1.VMware workstation 14.0(版本无所谓) 附链接:https://pan.baidu.com/s/1CrH ...
- Openstack架构及配置
Openstack云平台架构 一个良好的架构设计和运维保障措施,能为OpenStack云平台的稳定健康运行,产生不可估量的积极影响.如果化繁为简,简单的来说,要部署一套生产环境级别的OpenStack ...
- 【JAVA开发】Eclipse几个版本说明
查看Eclipse的版本号: 1. 找到eclipse安装目录 2. 进入readme文件夹,打开readme_eclipse.html 3. readme_eclipse.html呈现的第二行即数字 ...
- sql普通语句
select DISTINCT t_id from nrc_newsDISTINCT不会输出相同的值select top 5 * from nrc_news;检索前五行select * from nr ...
- [转帖]RedHat 如何更改网卡名 从ens192 改为eth0的问题
RedHat 如何更改网卡名 从ens192 改为eth0的问题 2017年03月27日 17:50:47 the_conquer_zzy 阅读数 2416 版权声明:本文为博主原创文章,遵循CC ...
- [转帖]加强Linux服务器安全的20项建议
加强Linux服务器安全的20项建议 2017-10-19 22:15:01作者:Linux编辑稿源:系统极客 https://ywnz.com/linuxyffq/99.html 一般情况下用 Li ...
- Redis 是怎么实现 “附近的人” 的?
针对"附近的人"这一位置服务领域的应用场景,常见的可使用PG.MySQL和MongoDB等多种DB的空间索引进行实现. 而Redis另辟蹊径,结合其有序队列zset以及geohas ...
- Tesseract机器识别
1.合并图片打开jtessboxeditor,点击Tools->Merge Tiff ,按住shift键选择前文提到的101个tif文件,并把生成的tif合并到新目录d:\python\lnyp ...
- 【计数dp】Array Without Local Maximums
参考博客:[CF1068D]Array Without Local Maximums(计数DP) [题意] n<=1e5 dp[i][j][k]表示当前第i个数字为j,第i-1个数字与第i个之间 ...