Peter Shirley-Ray Tracing in One Weekend (2016)

原著:Peter Shirley

本书是Peter Shirley ray tracing系列三部曲的第一本,也是学习ray tracing 入门比较容易的一本书,自己照着书上的内容,抄了一遍,Github有完整的代码,和每一章学习过程的代码,部分代码加了注释。

Github地址

目录:

  • Chapter1:Output an image
  • Chapter2:The vec3 class
  • Chapter3:Rays, a simple camera, and background
  • Chapter4:Adding a sphere
  • Chapter5:Surface normals and multiple objects
  • Chapter6:Antialiasing
  • Chapter7:Diffuse Materials

Chapter1:Output an image

使用ppm渲染到图片

#include <iostream>

using namespace std;

int main()
{
int nx =200;
int ny=100;
cout<<"P3\n"<<nx<<" "<<ny<<"\n255\n";
for(int j=ny-1;j>=0;j--)
{
for(int i=0;i<nx;i++)
{
float r=float(i)/float(nx);
float g=float(j)/float(ny);
float b=0.2; int ir=int(255.99*r);
int ig=int(255.99*g);
int ib=int(255.99*b);
cout<<ir<<" "ig<<" "<<ib<<"\n";
}
}
}

说明:

  • 像素从左往右打印
  • 从上向下打印
  • 这个例子中RGB计算出来在[0,1]之间,输出之前映射到一个高范围空间
  • 红+绿=黄
  • 打印的内容保存成.ppm格式即可预览

Chapter2:The vec3 class

用于几何向量计算和颜色计算,包含颜色,向量,位置坐标,偏移,主要包含重写操作符,以及点乘、叉乘等操作。

class vec3  {
public:
vec3() {}
vec3(float e0, float e1, float e2) { e[0] = e0; e[1] = e1; e[2] = e2; }
inline float x() const { return e[0]; }
inline float y() const { return e[1]; }
inline float z() const { return e[2]; }
inline float r() const { return e[0]; }
inline float g() const { return e[1]; }
inline float b() const { return e[2]; } inline const vec3& operator+() const { return *this; }
inline vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
inline float operator[](int i) const { return e[i]; }
inline float& operator[](int i) { return e[i]; }; inline vec3& operator+=(const vec3 &v2);
inline vec3& operator-=(const vec3 &v2);
inline vec3& operator*=(const vec3 &v2);
inline vec3& operator/=(const vec3 &v2);
inline vec3& operator*=(const float t);
inline vec3& operator/=(const float t); inline float length() const { return sqrt(e[0]*e[0] + e[1]*e[1] + e[2]*e[2]); }
inline float squared_length() const { return e[0]*e[0] + e[1]*e[1] + e[2]*e[2]; }
inline void make_unit_vector(); float e[3];
};

Chapter3:Rays, a simple camera, and background

所有的ray tracers 都是以ray类为基础,计算颜色

p(t) = A + t*B

其中A是光源点,B是ray的方向,t是具体float值,空间中确定一条线,不同的t,可以到达不同地方。

p(t)称为点A关于t的函数。Ray tracing的本质是通过发射射线,计算像素点的颜色。在ray tracing之前需要有个摄像机,建立坐标系,显示背景色,以及ray hit的点的颜色。

假设摄像机的位置就是眼睛位置,看到的内容为ppm显示的东西,简历坐标系,z轴正方向,垂直平面向外,x向右,y向上,

计算公式:

blended_value = (1-t)*start_value + t*end_value

Chapter4:Adding a sphere

球的公式:

x*x + y*y +z*z = R*R

对于任意xyz,如果满足球面公式,(x,y,z)为球面的一个点。

如果球心位置为(cx,cy,cz),公式为

(x-cx)*(x-cx) + (y-cy)*(y-cy) + (z-cz)*(z-cz) = R*R

用向量表示,球面点P,球心点C,半径可以表示为向量PC

dot((p-C)(p-C)) = (x-cx)*(x-cx) + (y-cy)*(y-cy) + (z-cz)*(z-cz)

等价于

dot((A + t*B - C),(A + t*B - C)) = R*R

展开之后

t*t*dot(B,B) + 2*t*dot(A-C,A-C) + dot(C,C) - R*R = 0

ABC已知,这里是一个关于t的一元二次方程,对于t无解,有一个解,有两个解的情况,即为下图

通过打印颜色,利用红色的射线,ray hit 圆,hit到的地方显示红色

bool hit_sphere(const vec3 & center, float radius,const ray& r)
{
vec3 oc = r.origin() -center;
float a = dot(r.direction(), r.direction());
float b = 2.0 * dot(oc,r.direction());
float c = dot(oc,oc) -radius*radius;
float discriminant = b*b - 4*a*c;
return (discriminant>0);
} vec3 color(const ray& r)
{
if(hit_sphere(vec3(0,0,-1),0.5,r))
return vec3(1.0,0,0); vec3 unit_direction = unit_vector(r.direction());
float t = 0.5 *(unit_direction.y() + 1.0);
return (1.0-t)*vec3(1.0,1.0,1.0) + t*vec3(0.5,0.7,1.0);
}

Chapter5:Surface normals and multiple objects

法线是垂直与物体表面的一个向量,对于上一节提到的球,他的法线方向是,从球心出发,射向hitpoint的。就像在地球上,地面的法向是从地心出发,射向你站立的点的。

假设N是长度在[-1,1]之间的单位向量,映射到去见[0,1]之间,再映射x/y/z到r/g/b,通常除了须要知道是否hit点,还要拿到hit point的数据。

// 本章 hit_Sphere的返回值改为float了
float hit_sphere(const vec3 & center, float radius,const ray& r)
{
vec3 oc = r.origin() -center;
float a = dot(r.direction(), r.direction());
float b = 2.0 * dot(oc,r.direction());
float c = dot(oc,oc) -radius*radius;
float discriminant = b*b - 4*a*c;
if(discriminant<0)
return -1.0;
else
return (-b-sqrt(discriminant))/(2.0*a);
} vec3 color(const ray& r)
{
float t = hit_sphere(vec3(0,0,-1),0.5,r);
if(t>0.0)
{
// 球心到hitpoint的单位法向量
vec3 N = unit_vector(r.point_at_parameter(t)-vec3(0,0,-1));
return 0.5*vec3(N.x() +1,N.y()+1,N.z()+1);
} vec3 unit_direction = unit_vector(r.direction());
t = 0.5 *(unit_direction.y() + 1.0);
return (1.0-t)*vec3(1.0,1.0,1.0) + t*vec3(0.5,0.7,1.0);
}

当场景中有多个可以被击中的物体的时候,需要一个Hitable的抽象类,包含抽象方法hit 是否击中,以及记录hit到的数据,包括hit的位置,hit点的法向,以及距离t

通过距离t

tmin< t < tmax

来控制hit到物体的距离远近,因为hit到之后将不再往后ray tracing。

#include "ray.h"

struct hit_record
{
float t;
vec3 p;
vec3 normal;
}; class hitable
{
public:
virtual bool hit(const ray& r,float t_min,float t_max,hit_record & rec)const =0;
};

对于sphere类基础hitable抽象类,实现自己的hit方法,去判断是否击中了球的对象


#include "hitable.h" class sphere: public hitable {
public:
sphere() {}
sphere(vec3 cen, float r) : center(cen), radius(r) {};
virtual bool hit(const ray& r, float tmin, float tmax, hit_record& rec) const;
vec3 center;
float radius;
}; bool sphere::hit(const ray& r, float t_min, float t_max, hit_record& rec) const {
vec3 oc = r.origin() - center;
float a = dot(r.direction(), r.direction());
float b = dot(oc, r.direction());
float c = dot(oc, oc) - radius*radius;
float discriminant = b*b - a*c;
if (discriminant > 0) {
float temp = (-b - sqrt(discriminant))/a;
if (temp < t_max && temp > t_min) {
rec.t = temp;
rec.p = r.point_at_parameter(rec.t);
rec.normal = (rec.p - center) / radius;
return true;
}
temp = (-b + sqrt(discriminant)) / a;
if (temp < t_max && temp > t_min) {
rec.t = temp;
rec.p = r.point_at_parameter(rec.t);
rec.normal = (rec.p - center) / radius;
return true;
}
}
return false;
}

还需要一个hitable list去记录击中所有的物体,也是继承hitable类,实现hit方法,去找出最近的物体。


#include "hitable.h" class hitable_list: public hitable {
public:
hitable_list() {}
hitable_list(hitable **l, int n) {list = l; list_size = n; }
virtual bool hit(const ray& r, float tmin, float tmax, hit_record& rec) const;
hitable **list;
int list_size;
}; bool hitable_list::hit(const ray& r, float t_min, float t_max, hit_record& rec) const {
hit_record temp_rec;
bool hit_anything = false;
double closest_so_far = t_max;
for (int i = 0; i < list_size; i++) {
if (list[i]->hit(r, t_min, closest_so_far, temp_rec)) {
hit_anything = true;
closest_so_far = temp_rec.t;
rec = temp_rec;
}
}
return hit_anything;
}

本章新的main函数如下

#include <iostream>
#include "sphere.h"
#include "hitable_list.h"
#include "float.h" using namespace std; vec3 color(const ray& r,hitable *world)
{
hit_record rec;
if(world->hit(r,0.0,MAXFLOAT,rec))
return 0.5*vec3(rec.normal.x()+1,rec.normal.y()+1,rec.normal.z()+1);
else
{
vec3 unit_direction = unit_vector(r.direction());
float t = 0.5 *(unit_direction.y() + 1.0);
return (1.0-t)*vec3(1.0,1.0,1.0) + t*vec3(0.5,0.7,1.0);
}
} int main()
{
int nx =200;
int ny=100;
cout<<"P3\n"<<nx<<" "<<ny<<"\n255\n";
vec3 lower_left_corner(-2.0,-1.0,-1.0);
vec3 horizontal(4.0,0.0,0.0);
vec3 vertical(0.0,2.0,0.0);
vec3 origin(0.0,0.0,0.0); hitable *list[2];
// 球1
list[0] = new sphere(vec3(0,0,-1),0.5);
// 球2
list[1] = new sphere(vec3(0,-100.5,-1),100); hitable *world = new hitable_list(list,2);
for(int j=ny-1;j>=0;j--)
{
for(int i=0;i<nx;i++)
{
float u = float(i)/float(nx);
float v = float(j)/float(ny); ray r(origin,lower_left_corner + u*horizontal +v * vertical); vec3 p = r.point_at_parameter(2.0);
vec3 col = color(r,world); int ir=int(255.99* col[0]);
int ig=int(255.99* col[1]);
int ib=int(255.99* col[2]);;
cout<<ir<<" "<<ig<<" "<<ib<<"\n";
}
}
}

Chapter6:Antialiasing

真实世界中,照相机拍照时,一边边缘部分没有锯齿,因为每个像素,前景和背景在边缘的地方进行的混合。我们可以通过平均多个像素的值,达到一样的效果。我们的做法是,抽象camera类,后面再写颜色的部分。

还需要写个随机数的生成器,用来控制采样点的位置,范围是在[0,1]之间。这里我定义了一个宏

#define random(a,b) (rand()%(b-a+1)+a)

使用rand()程序运行时每次生成的随机数和上一次相同,便于调试。

对于给的一个像素,我们有好几个采样点在像素内,对每个采样点进行ray tracer,再平均每个采样点的color。

camera类

class camera
{
vec3 origin;
vec3 horizontal;
vec3 vertical;
vec3 lower_left_corner; public :
camera()
{
lower_left_corner = vec3 (-2.0,-1.0,-1.0);
horizontal = vec3(4.0,0.0,0.0);
vertical = vec3(0.0,2.0,0.0);
origin = vec3(0.0,0.0,0.0);
} ray get_ray(float u,float v)
{
return ray(origin,lower_left_corner+u*horizontal + v*vertical - origin);
} };

main函数

#include <iostream>
#include "sphere.h"
#include "hitable_list.h"
#include "float.h"
#include "camera.h"
#include "random"
#define random(a,b) (rand()%(b-a+1)+a) using namespace std; vec3 color(const ray& r,hitable *world)
{
hit_record rec;
if(world->hit(r,0.0,MAXFLOAT,rec))
return 0.5*vec3(rec.normal.x()+1,rec.normal.y()+1,rec.normal.z()+1);
else
{
vec3 unit_direction = unit_vector(r.direction());
float t = 0.5 *(unit_direction.y() + 1.0);
return (1.0-t)*vec3(1.0,1.0,1.0) + t*vec3(0.5,0.7,1.0);
}
} int main()
{
int nx =200;
int ny=100;
// 采样数量ns
int ns = 100;
cout<<"P3\n"<<nx<<" "<<ny<<"\n255\n"; camera cam; hitable *list[2];
// 球1
list[0] = new sphere(vec3(0,0,-1),0.5);
// 球2
list[1] = new sphere(vec3(0,-100.5,-1),100); hitable *world = new hitable_list(list,2);
random_device rd; for(int j=ny-1;j>=0;j--)
{
for(int i=0;i<nx;i++)
{
vec3 col(0,0,0); for(int s = 0; s<ns; s++)
{
float u = (float(i)+float(random(0,100))/100.0f)/float(nx);
float v = (float(j)+float(random(0,100))/100.0f)/float(ny); ray r = cam.get_ray(u,v);
vec3 p = r.point_at_parameter(2.0);
col += color(r,world);
}
// color 取均值
col /= float(ns); int ir=int(255.99* col[0]);
int ig=int(255.99* col[1]);
int ib=int(255.99* col[2]);;
cout<<ir<<" "<<ig<<" "<<ib<<"\n";
}
} }

最后达到的效果如下

Chapter7:Diffuse Materials

之前已经实现了多个object 和每个像素多个采样,本章将实现漫反射材质。首先需要明确的一点是,物体和材质的关系,我们假设球体有一个自己的材质,通常在渲染中,每个物体都有自己的材质。

不发光的物体,漫反射是吸收周围的颜色,显示出来,物体表面反射周围的光线的方向是随机的,如下图,在2个不同的物体的漫反射表面间,发射了3条光线,三条光线的漫反射之后的路径各不相同:

漫反射物体的表面,也可能会吸收部分光线,表面越暗,吸收的光线越多,吸收之后看起来就像一个哑光的表面。

选择一个随机的点切一个单位半径的球,这个点就是hitpoint,在球上选个随机点s,从p到s做一条线,作为漫反射的方向,这个球的球心是(p + N),N是hitpoitn的法向。

关于球面上s点如何区,这里的做法是,在单位cube中,选一个点,x、y、z都在[-1,1]之间,如果这个点不在球内,继续选点,直到满足在球内的这个条件。

// 单位cube随机取点,返回一个在球内的点
vec3 random_in_unit_sphere()
{
vec3 p;
do{
p = 2.0*vec3(random1,random1,random1) - vec3(1,1,1);
}while (dot(p,p) >= 1.0);
return p;
} vec3 color(const ray& r,hitable *world)
{
hit_record rec;
if(world->hit(r,0.0,MAXFLOAT,rec))
{
vec3 target = rec.p + rec.normal + random_in_unit_sphere();
return 0.5* color(ray(rec.p, target - rec.p), world);
}
else
{
vec3 unit_direction = unit_vector(r.direction());
float t = 0.5 *(unit_direction.y() + 1.0);
return (1.0-t)*vec3(1.0,1.0,1.0) + t*vec3(0.5,0.7,1.0);
}
}

得到的图像如下:

球和地板的交界处的颜色可能不明显,是因为吸收的光太多了,可以通多将颜色开放的方法,来提高物体表面的亮度,减少吸收的光

col = vec3(sqrt(col[0]),sqrt(col[1]),sqrt(col[2]));

这样就可以看清楚交界处的阴影效果了,如下图:

(上篇完)

下篇将从以下几个方面继续学习

  • Chapter8:Metal
  • Chapter9:Dielectrics
  • Chapter10:Positionable camera
  • Chapter11:Defocus
  • Chapter12:Where next?

Peter Shirley Ray Tracing in One Weekend(上篇)的更多相关文章

  1. Peter Shirley Ray Tracing in One Weekend(下篇)

    Peter Shirley-Ray Tracing in One Weekend (2016) 原著:Peter Shirley 下篇主要对本书的后5章节进行学习,包括材质球的Metal,和Diele ...

  2. Fundamentals of Computer Graphics 中文版(第二版) (Peter Shirley 著)

    1 引言 2 数学知识 3 光栅算法 4 信号处理 5 线性代数 6 矩阵变换 7 观察 8 隐藏面消除 9 表面明暗处理 10 光线追踪 11 纹理映射 12 完整的图形流水线 13 图形学的数据结 ...

  3. OpenCascade Ray Tracing Rendering

    OpenCascade Ray Tracing Rendering eryar@163.com 摘要Abstract:OpenCascade6.7.0中引入了光线跟踪算法的实现.使用光线跟踪算法可实现 ...

  4. 开始研究Ray tracing

    几个月前面试时Boss问过我一个问题--"除了scanline渲染方法,你还知道什么其他渲染方式?",我没答出来,至今记忆犹新. 前段时间摆弄Intel VTune时看了它的示例代 ...

  5. Ray Tracing

    Ray Tracing 题目链接:http://codeforces.com/problemset/problem/724/C 拓展欧几里得 //为什么这次C题这么难啊=.= 可以观察到,光线在矩形中 ...

  6. 《Ray Tracing in One Weekend》、《Ray Tracing from the Ground Up》读后感以及光线追踪学习推荐

    <Ray Tracing in One Weekend> 优点: 相对简单易懂 渲染效果相当好 代码简短,只看书上的代码就可以写出完整的程序,而且Github上的代码是将基类与之类写在一起 ...

  7. 【Ray Tracing The Next Week 超详解】 光线追踪2-7 任意长方体 && 场景案例

    上一篇比较简单,很久才发是因为做了一些好玩的场景,后来发现这一章是专门写场景例子的,所以就安排到了这一篇 Preface 这一篇要介绍的内容有: 1. 自己做的光照例子 2. Cornell box画 ...

  8. 【RAY TRACING THE REST OF YOUR LIFE 超详解】 光线追踪 3-7 混合概率密度

     Preface 注:鉴于很多网站随意爬取数据,可能导致内容残缺以及引用失效等问题,影响阅读,请认准原创网址: https://www.cnblogs.com/lv-anchoret/category ...

  9. 【RAY TRACING THE REST OF YOUR LIFE 超详解】 光线追踪 3-5 random direction & ONB

     Preface 往后看了几章,对这本书有了新的理解 上一篇,我们第一次尝试把MC积分运用到了Lambertian材质中,当然,第一次尝试是失败的,作者发现它的渲染效果和现实有些出入,所以结尾处声明要 ...

随机推荐

  1. Java总复习内容

    StringBuffer定义时需要用正确的方式 例如: StringBuffer xxx = new StringBuffer("雯雯是猪"); 使用StringBuffer的连接 ...

  2. Servlet的request和response

    SERVLET API中forward() 与redirect()的区别?  答:前者仅是容器中控制权的转向,在客户端浏览器地址栏中不会显示出转向后的地址:后者则是完全的跳转,浏览器将会得到跳转的地址 ...

  3. oracle 创建新用户,授权dba

    1.用有dba权限的用户登录:sys用户 2.创建一个新用户:create user abc identified by 123456; 3.授予DBA权限: grant connect,resour ...

  4. Jquery中数组转字符串,c:foreach自动将带","字符串进行拆分赋值

    1.数组转字符串,逗号分割 a.push()将元素依次添加至数组: b.join()将数组转换成字符串,里面可以带参数分隔符,默认[,] <script type = text/javascri ...

  5. 复合模式MVC

    这里也只说一下简单的原理. Model:模型实现处理数据的切逻辑. View:视图呈现模型的数据和状态. Control:解读视图对模型的操作. 视图和模型之间使用观察者模式,只要模型的状态改变视图立 ...

  6. vue—组件基础了解

    什么是组件? 组件是vue中的一个可复用实例,所以new Vue()是vue中最大的那个组件,根组件,有名字,使用的时候以单标签或双标签使用 vm = newVue() 是最大的组件,具有很多实用性的 ...

  7. ~ android与ios的区别

    Oracle与Mysql的区别 项目类别 android ios 应用上 可以使用常用的android模拟器,来模拟各种android设备 只能直接使用iphone或ipad进行测试 开发语言 基于L ...

  8. 玩linux笔记——持续更新

    说在最前面 centos 是基于redhat linux,所以最好的教程在红帽官网 https://access.redhat.com/documentation/en-us/red_hat_ente ...

  9. AtCoder Beginner Contest 144 题解

    传送门 $cf$ 自闭了,打 $abc$ 散散心 A - 9x9 ...这个有什么好讲的吗,题目看懂就会做了 #include<iostream> #include<cstdio&g ...

  10. 怎样监听HTTP请求的发出与完成

    1. 监听HTTP请求发出的事件是: xhr.onloadstart 2. 监听HTTP请求结束的事件是: xhr.onloadend xhr.onloadstart = function() { / ...