题目

https://ac.nowcoder.com/acm/contest/907/D

做法

\((x)_k\)定义编号,如果\(a+b\)加到一起能进一位,\(a+b\rightarrow 1+(a+b-k)=a+b-(k-1)\),故\(d(a_{l,r})=\sum\limits_{i=l}^r a_i\% k-1\)

但我们发现\(k-1\)这一块缺失了,显然为\(0\)当且仅当区间均为\(0\),其他情况得出\(0\)的时候实际结果为\(k-1\)

  • \(b=0\):全\(0\)区间个数

  • \(b=k-1\):满足\(/%(k-1)=0\)的个数-全\(0\)区间个数

  • 其他情况:\(a_{l,r}=sum_r-sum_{l-1}\%(k-1),sum_r-sum_{l-1}\equiv b (\%k-1),sum_r-b\equiv sum_{l-1}(\%k-1)\)

Code

#include<bits/stdc++.h>
typedef long long LL;
const LL maxn=1e6+9;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}return x*f;
}
LL k,b,n,ret,num,ze;
LL a[maxn],sum[maxn];
std::map<LL,LL> cnt;
int main(){
k=Read(); b=Read(); n=Read();
for(LL i=1;i<=n;++i) a[i]=Read();
for(LL i=1;i<=n;++i){
sum[i]=(sum[i-1]+a[i])%(k-1);
if(!a[i]){
++num;
ze+=num;
}else
num=0;
}
if(!b){
printf("%lld\n",ze);
return 0;
}
cnt[0]++;
for(LL i=1;i<=n;++i){
LL val((sum[i]-b+k-1)%(k-1));
ret+=cnt[val];
++cnt[sum[i]];
}
if(b==k-1) ret-=ze;
printf("%lld\n",ret);
return 0;
}

D-【乐】k进制数(同余)的更多相关文章

  1. CF459C Pashmak and Buses (构造d位k进制数

    C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 seco ...

  2. P1066 2^k进制数

    传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...

  3. 洛谷 P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  4. 【洛谷p1066】2^k进制数

    (不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...

  5. 一本通1649【例 2】2^k 进制数

    1649:[例 2]2^k 进制数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以 ...

  6. 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)

    题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...

  7. 洛谷P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  8. [NOIP2006] 提高组 洛谷P1066 2^k进制数

    题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...

  9. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

随机推荐

  1. Python之(scikit-learn)机器学习

    一.机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或 ...

  2. PIE二次开发——大气校正

    窗体设计: 代码: private void button_src_Click(object sender, EventArgs e) { OpenFileDialog openFile = new ...

  3. 数据结构与算法(周测3-Huffman树)

    判断题 1.Given a Huffman tree for N (≥2) characters, all with different weights. The weight of any non- ...

  4. openstack-neutron(2)

    VXLAN 独立于底层的网络拓扑:反过来,两个 VTEP 之间的底层 IP 网络也独立于 VXLAN.VXLAN 数据包是根据外层的 IP header 路由的,该 header 将两端的 VTEP ...

  5. 利用 CAKeyframeAnimation实现任意轨迹移动

      自定义 View,实现以下方法即可 - (void)drawRect:(CGRect)rect { // Drawing code // 初始化UIBezierPath UIBezierPath ...

  6. 分享一个仿网易新闻客户端iPhone版的标签式导航ViewController

    该Controller是一个容器,用于容纳其他的controller.效果与网易新闻客户端的标签式导航基本一样: (1)点击上面的标签,可以切换到对应的controller,标签下面的红色提示条的长度 ...

  7. Android NDK 学习之调用Java函数

    本博客主要是在Ubuntu 下开发,且默认你已经安装了Eclipse,Android SDK, Android NDK, CDT插件. 在Eclipse中添加配置NDK,路径如下Eclipse-> ...

  8. mycat-rule

    <?xml version="1.0" encoding="UTF-8"?> <!-- - - Licensed under the Apac ...

  9. 【OF框架】使用OF框架创建应用项目

    开始:准备工作 开发环境已经安装Visual Studio,包含Web开发负载.Python开发负载.NodeJs开发负载 开发环境已经安装Visual Studio Code 开发环境已经安装Nod ...

  10. LeetCode:135. 分发糖果

    LeetCode:135. 分发糖果 老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分. 你需要按照以下要求,帮助老师给这些孩子分发糖果: 每个孩子至少分 ...