D-【乐】k进制数(同余)
题目
https://ac.nowcoder.com/acm/contest/907/D
做法
\((x)_k\)定义编号,如果\(a+b\)加到一起能进一位,\(a+b\rightarrow 1+(a+b-k)=a+b-(k-1)\),故\(d(a_{l,r})=\sum\limits_{i=l}^r a_i\% k-1\)
但我们发现\(k-1\)这一块缺失了,显然为\(0\)当且仅当区间均为\(0\),其他情况得出\(0\)的时候实际结果为\(k-1\)
\(b=0\):全\(0\)区间个数
\(b=k-1\):满足\(/%(k-1)=0\)的个数-全\(0\)区间个数
其他情况:\(a_{l,r}=sum_r-sum_{l-1}\%(k-1),sum_r-sum_{l-1}\equiv b (\%k-1),sum_r-b\equiv sum_{l-1}(\%k-1)\)
Code
#include<bits/stdc++.h>
typedef long long LL;
const LL maxn=1e6+9;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}return x*f;
}
LL k,b,n,ret,num,ze;
LL a[maxn],sum[maxn];
std::map<LL,LL> cnt;
int main(){
k=Read(); b=Read(); n=Read();
for(LL i=1;i<=n;++i) a[i]=Read();
for(LL i=1;i<=n;++i){
sum[i]=(sum[i-1]+a[i])%(k-1);
if(!a[i]){
++num;
ze+=num;
}else
num=0;
}
if(!b){
printf("%lld\n",ze);
return 0;
}
cnt[0]++;
for(LL i=1;i<=n;++i){
LL val((sum[i]-b+k-1)%(k-1));
ret+=cnt[val];
++cnt[sum[i]];
}
if(b==k-1) ret-=ze;
printf("%lld\n",ret);
return 0;
}
D-【乐】k进制数(同余)的更多相关文章
- CF459C Pashmak and Buses (构造d位k进制数
C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 seco ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 【洛谷p1066】2^k进制数
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...
- 一本通1649【例 2】2^k 进制数
1649:[例 2]2^k 进制数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以 ...
- 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)
题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...
- 洛谷P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- [NOIP2006] 提高组 洛谷P1066 2^k进制数
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
随机推荐
- C# async 和 await 理解
C# async 和 await 理解 先假设如下场景: 主函数 Main,循环等待用户输入: 计算函数 Cal,耗时计算大量数据: class Test { static int Main(stri ...
- JS定时器做物体运动
JS定时器是函数 setInterval(函数体/函数名 , 时间) 清楚定时器 clearInterval(函数) 时间单位(毫秒) 1000毫秒 = 1秒 首先我们要知道用JS定时器能干什么? ...
- oracle 01741:非法的零长度标识
转自:https://blog.csdn.net/wanderball/article/details/7690206 出现此问题是标识符里有两个连续的“”号,去掉即可,或是里面填充内容,避免两个连续 ...
- flutter常见编译运行等奇怪问题的汇总汇(l转)
1. flutter ios 卡死在闪屏页:解决办法: 1) flutter doctor 2) flutter clean 3) flutter build ios --release 4) Arc ...
- MySQL数据库语法-单表查询练习
MySQL数据库语法-单表查询练习 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客主要是对聚合函数和分组的练习. 一.数据表和测试数据准备 /* @author :yinz ...
- 查看安装的centos的操作系统版本
cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core)
- rabbitmq二进制安装
一.erland的安装 1.首先测试一下是否已经安装了erlang,命令 rpm -qa | grep erlang 2.没有安装则用yum安装 yum install erlang -y 二.下载r ...
- MaxTenuringThreshold与阈值的动态调整理论详解
今天会学习“MaxTenuringThreshold”这样一个新的JVM参数,编写的示例还是会基于上一次的代码,新建个类,如下: 接下来给它设置JVM的参数,具体如下: 而接下来会新增三个参数: 这个 ...
- linux网络编程之socket编程(八)
学习socket编程继续,今天要学习的内容如下: 先来简单介绍一下这五种模型分别是哪些,偏理论,有个大致的印象就成,做个对比,因为最终只会研究一个I/O模型,也是经常会用到的, 阻塞I/O: 先用一个 ...
- linux网络编程之posix共享内存
今天继续研究posix IPC对象,这次主要是学习一下posix共享内存的使用方法,下面开始: 下面编写程序来创建一个共享内存: 编译运行: 那posix的共享内存存放在哪里呢?上节中学的posix的 ...