对于某一大小的连通子图包含的黑点的数目的最大值和最小值都能取到
考虑树形dp
$f[i][j]$ 表示从 $i$ 的子树中选出大小为 $j$ 的联通子图黑点数目的最小值
$g[i][j]$ 表示从 $i$ 的子树中选出大小为 $j$ 的联通子图黑点数目的最大值
树形dp转移

#include <bits/stdc++.h>

const int N = ;

#define gc getchar()

inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} int head[N], cnt;
struct Node {
int u, v, nxt;
} G[N << ];
int n, q;
int v[N];
int f[N][N], g[N][N];
int size[N]; inline void Add(int u, int v) {G[++ cnt].v = v; G[cnt].nxt = head[u]; head[u] = cnt;} void Dfs(int x, int fa) {
size[x] = , f[x][] = g[x][] = v[x];
for(int i = head[x]; ~ i; i = G[i].nxt) {
int v = G[i].v;
if(v != fa) {
Dfs(v, x);
for(int j = size[x]; j >= ; j --) {
for(int k = size[v]; k >= ; k --) {
f[x][j + k] = std:: min(f[x][j + k], f[x][j] + f[v][k]);
g[x][j + k] = std:: max(g[x][j + k], g[x][j] + g[v][k]);
}
}
size[x] += size[v];
}
}
for(int i = ; i <= n; i ++) {
f[][i] = std:: min(f[][i], f[x][i]);
g[][i] = std:: max(g[][i], g[x][i]);
}
} int main() {
int t = read();
for(; t; t --) {
cnt = ;
memset(f, 0x3f, sizeof f);
memset(g, 0xc0, sizeof g);
n = read(); q = read();
for(int i = ; i <= n; i ++) head[i] = -;
for(int i = ; i < n; i ++) {
int u = read(), v = read();
Add(u, v), Add(v, u);
}
for(int i = ; i <= n; i ++) v[i] = read();
Dfs(, );
for(; q; q --) {
int x = read(), y = read();
if(f[][x] <= y && y <= g[][x]) puts("YES");
else puts("NO");
}
puts("");
}
return ;
}

bzoj 5072的更多相关文章

  1. bzoj 5072 [Lydsy1710月赛]小A的树——树形dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 发现对于每个子树,黑点个数确定时,连通块的大小取值范围一定是一段区间:所以考虑只最小化 ...

  2. bzoj 5072 小A的树 —— 树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 由于对于一个子树,固定有 j 个黑点,连通块大小是一个连续的范围: 所以记 f[i][ ...

  3. [BZOJ 5072]小A的树

    Description 题库链接 给你 \(n\) 个节点的一棵树,点分黑白. \(q\) 组询问,每次询问类似于"是否存在树中 \(x\) 个点的连通块恰有 \(y\) 个黑点" ...

  4. [BZOJ 5072][Lydsy1710月赛]小A的树

    传送门 \(\color{green}{solution}\) 嗯...其实我也不太会,所以大胆猜个结论吧(后来证了一下,然后放弃了...). 我们发现如果要使一个联通块的黑点数量为\(k\)的方案最 ...

  5. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  6. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  7. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  8. bzoj 4610 Ceiling Functi

    bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...

  9. BZOJ 题目整理

    bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...

随机推荐

  1. S04_CH01_搭建工程移植LINUX/测试EMMC/VGA

    S04_CH01_搭建工程移植LINUX/测试EMMC/VGA 1.1概述: 本章内容是在已经提供安装了VIVADO2015.4 的ubuntu系统下,进行.大家可以下周我们已经提供的虚拟机镜像,我们 ...

  2. Redis的bind的误区(转)

    原文1:https://blog.csdn.net/cw_hello1/article/details/83444013 原文2:https://www.cnblogs.com/suiyueqiann ...

  3. 此项目与Visual Studio的当前版本不兼容的报错

    问题再现:程序是用visual studio 2013开发的,放在本地运行报此项目与Visual Studio的当前版本不兼容.本地是visual studio 2010. 解决办法: <1&g ...

  4. Idea 使用 Junit4 进行单元测试

    目录 Idea 使用 Junit4 进行单元测试 1. Junit4 依赖安装 2. 编写测试代码 3. 生成测试类 4. 运行 Idea 使用 Junit4 进行单元测试 1. Junit4 依赖安 ...

  5. (三)Struts之Action类基础(一)

    一.Action的类型 A.使用普通的类 必须有public的execute且返回值为String的方法. ActionType.java package com; public class Acti ...

  6. Linux查看进程并重启服务命令

    top -u root 查看系统进程service network restartservice iptables restartservice sshd restartservice nginx r ...

  7. 媲美pandas的数据分析工具包Datatable

    1 前言 data.table 是 R 中一个非常通用和高性能的包,使用简单.方便而且速度快,在 R 语言社区非常受欢迎,每个月的下载量超过 40 万,有近 650 个 CRAN 和 Biocondu ...

  8. java调用.net的webservice接口

    要调用webservice,首先得有接口,用已经写好的接口地址在myEclipse的目标project中,右键->new web service client-> 选择JAX-WS方式,点 ...

  9. [书籍翻译] 《JavaScript并发编程》第六章 实用的并发

    本文是我翻译<JavaScript Concurrency>书籍的第六章 实用的并发,该书主要以Promises.Generator.Web workers等技术来讲解JavaScript ...

  10. Masonry个人笔记

    1.有些场合需要获取View在约束之后的frame.直接init初始化后取出来的均为(0,0,0,0).在以下方法中获取即可: View: - (void)layoutSubviews ViewCon ...