当下最热神经网络为CNN,2017年10月,深度学习之父Hinton发表《胶囊间的动态路由》(Capsule Networks),最近谷歌正式开源了Hinton胶囊理论代码,提出的胶囊神经网络。本文不涉及原理,只是站在巨人的肩膀人,尝试把胶囊网络应用与分类问题。

原理和代码的参考文献是:https://blog.csdn.net/weixin_40920290/article/details/82951826

其中,本文采用的数据集和以2019年3月CNN做电能质量分类的一样,可以去那个博文中下载数据集。这里只展示代码。需要提醒的是,Capsule Networks的运行速度会比较慢,耐心等待.

如果由于格式问题无法运行,可以把邮箱私戳发给我,我把Capsule.py发给你

1.代码

from __future__ import print_function

import numpy as np

from keras import layers, models, optimizers

from keras import backend as K

from keras.utils import to_categorical

import matplotlib.pyplot as plt

from utils import combine_images

from PIL import Image

from capsulelayers import CapsuleLayer, PrimaryCap, Length, Mask

import keras

from pandas import read_csv

K.set_image_data_format('channels_last')

def CapsNet(input_shape, n_class, routings):

    """

    A Capsule Network on MNIST.

    :param input_shape: data shape, 3d, [width, height, channels]

    :param n_class: number of classes

    :param routings: number of routing iterations

    :return: Two Keras Models, the first one used for training, and the second one for evaluation.

            `eval_model` can also be used for training.

    """

    x = layers.Input(shape=input_shape)

    # Layer 1: Just a conventional Conv2D layer

    conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x)

    # Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]

    primarycaps = PrimaryCap(conv1, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')

    # Layer 3: Capsule layer. Routing algorithm works here.

    digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,

                            name='digitcaps')(primarycaps)

    # Layer 4: This is an auxiliary layer to replace each capsule with its length. Just to match the true label's shape.

    # If using tensorflow, this will not be necessary. :)

    out_caps = Length(name='capsnet')(digitcaps)

    # Decoder network.

    y = layers.Input(shape=(n_class,))

    masked_by_y = Mask()([digitcaps, y])  # The true label is used to mask the output of capsule layer. For training

    masked = Mask()(digitcaps)  # Mask using the capsule with maximal length. For prediction

    # Shared Decoder model in training and prediction

    decoder = models.Sequential(name='decoder')

    decoder.add(layers.Dense(512, activation='relu', input_dim=16*n_class))

    decoder.add(layers.Dense(1024, activation='relu'))

    decoder.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))

    decoder.add(layers.Reshape(target_shape=input_shape, name='out_recon'))

    # Models for training and evaluation (prediction)

    train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])

    eval_model = models.Model(x, [out_caps, decoder(masked)])

    # manipulate model

    noise = layers.Input(shape=(n_class, 16))

    noised_digitcaps = layers.Add()([digitcaps, noise])

    masked_noised_y = Mask()([noised_digitcaps, y])

    manipulate_model = models.Model([x, y, noise], decoder(masked_noised_y))

    return train_model, eval_model, manipulate_model

def margin_loss(y_true, y_pred):

    """

    Margin loss for Eq.(4). When y_true[i, :] contains not just one `1`, this loss should work too. Not test it.

    :param y_true: [None, n_classes]

    :param y_pred: [None, num_capsule]

    :return: a scalar loss value.

    """

    L = y_true * K.square(K.maximum(0., 0.9 - y_pred)) + \

        0.5 * (1 - y_true) * K.square(K.maximum(0., y_pred - 0.1))

    return K.mean(K.sum(L, 1))

def train(model, data, args):

    """

    Training a CapsuleNet

    :param model: the CapsuleNet model

    :param data: a tuple containing training and testing data, like `((x_train, y_train), (x_test, y_test))`

    :param args: arguments

    :return: The trained model

    """

    # unpacking the data

    (x_train, y_train), (x_test, y_test) = data

    # callbacks

    log = callbacks.CSVLogger(args.save_dir + '/log.csv')

    tb = callbacks.TensorBoard(log_dir=args.save_dir + '/tensorboard-logs',

                              batch_size=args.batch_size, histogram_freq=int(args.debug))

    checkpoint = callbacks.ModelCheckpoint(args.save_dir + '/weights-{epoch:02d}.h5', monitor='val_capsnet_acc',

                                          save_best_only=True, save_weights_only=True, verbose=1)

    lr_decay = callbacks.LearningRateScheduler(schedule=lambda epoch: args.lr * (args.lr_decay ** epoch))

    # compile the model

    model.compile(optimizer=optimizers.Adam(lr=args.lr),

                  loss=[margin_loss, 'mse'],

                  loss_weights=[1., args.lam_recon],

                  metrics={'capsnet': 'accuracy'})

    """

    # Training without data augmentation:

    model.fit([x_train, y_train], [y_train, x_train], batch_size=args.batch_size, epochs=args.epochs,

              validation_data=[[x_test, y_test], [y_test, x_test]], callbacks=[log, tb, checkpoint, lr_decay])

    """

    # Begin: Training with data augmentation ---------------------------------------------------------------------#

    def train_generator(x, y, batch_size, shift_fraction=0.):

        train_datagen = ImageDataGenerator(width_shift_range=shift_fraction,

                                          height_shift_range=shift_fraction)  # shift up to 2 pixel for MNIST

        generator = train_datagen.flow(x, y, batch_size=batch_size)

        while 1:

            x_batch, y_batch = generator.next()

            yield ([x_batch, y_batch], [y_batch, x_batch])

    # Training with data augmentation. If shift_fraction=0., also no augmentation.

    model.fit_generator(generator=train_generator(x_train, y_train, args.batch_size, args.shift_fraction),

                        steps_per_epoch=int(y_train.shape[0] / args.batch_size),

                        epochs=args.epochs,

                        validation_data=[[x_test, y_test], [y_test, x_test]],

                        callbacks=[log, tb, checkpoint, lr_decay])

    # End: Training with data augmentation -----------------------------------------------------------------------#

    model.save_weights(args.save_dir + '/trained_model.h5')

    print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)

    from utils import plot_log

    plot_log(args.save_dir + '/log.csv', show=True)

    return model

def test(model, data, args):

    x_test, y_test = data

    y_pred, x_recon = model.predict(x_test, batch_size=100)

    print('-'*30 + 'Begin: test' + '-'*30)

    print('Test acc:', np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/y_test.shape[0])

    img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))

    image = img * 255

    Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")

    print()

    print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)

    print('-' * 30 + 'End: test' + '-' * 30)

    plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))

    plt.show()

def manipulate_latent(model, data, args):

    print('-'*30 + 'Begin: manipulate' + '-'*30)

    x_test, y_test = data

    index = np.argmax(y_test, 1) == args.digit

    number = np.random.randint(low=0, high=sum(index) - 1)

    x, y = x_test[index][number], y_test[index][number]

    x, y = np.expand_dims(x, 0), np.expand_dims(y, 0)

    noise = np.zeros([1, 10, 16])

    x_recons = []

    for dim in range(16):

        for r in [-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25]:

            tmp = np.copy(noise)

            tmp[:,:,dim] = r

            x_recon = model.predict([x, y, tmp])

            x_recons.append(x_recon)

    x_recons = np.concatenate(x_recons)

    img = combine_images(x_recons, height=16)

    image = img*255

    Image.fromarray(image.astype(np.uint8)).save(args.save_dir + '/manipulate-%d.png' % args.digit)

    print('manipulated result saved to %s/manipulate-%d.png' % (args.save_dir, args.digit))

    print('-' * 30 + 'End: manipulate' + '-' * 30)

def load_mnist():

    # the data, shuffled and split between train and test sets

    dataset = read_csv('ZerosOnePowerQuality.csv')

    values = dataset.values

    XY= values

    num_classes = 8

    Y = XY[:,784]

    n_train_hours1 =9000

    x_train=XY[:n_train_hours1,0:784]

    trainY =Y[:n_train_hours1]

    x_test =XY[n_train_hours1:, 0:784]

    testY =Y[n_train_hours1:]

    x_train = x_train.reshape(-1,28,28,1)

    x_test = x_test.reshape(-1,28,28,1)

    y_train = keras.utils.to_categorical(trainY, num_classes)

    y_test = keras.utils.to_categorical(testY, num_classes)

    return (x_train, y_train), (x_test, y_test)

if __name__ == "__main__":

    import os

    import argparse

    from keras.preprocessing.image import ImageDataGenerator

    from keras import callbacks

    # setting the hyper parameters

    parser = argparse.ArgumentParser(description="Capsule Network on MNIST.")

    parser.add_argument('--epochs', default=50, type=int)

    parser.add_argument('--batch_size', default=100, type=int)

    parser.add_argument('--lr', default=0.001, type=float,

                        help="Initial learning rate")

    parser.add_argument('--lr_decay', default=0.9, type=float,

                        help="The value multiplied by lr at each epoch. Set a larger value for larger epochs")

    parser.add_argument('--lam_recon', default=0.392, type=float,

                        help="The coefficient for the loss of decoder")

    parser.add_argument('-r', '--routings', default=3, type=int,

                        help="Number of iterations used in routing algorithm. should > 0")

    parser.add_argument('--shift_fraction', default=0.1, type=float,

                        help="Fraction of pixels to shift at most in each direction.")

    parser.add_argument('--debug', action='store_true',

                        help="Save weights by TensorBoard")

    parser.add_argument('--save_dir', default='./result')

    parser.add_argument('-t', '--testing', action='store_true',

                        help="Test the trained model on testing dataset")

    parser.add_argument('--digit', default=5, type=int,

                        help="Digit to manipulate")

    parser.add_argument('-w', '--weights', default=None,

                        help="The path of the saved weights. Should be specified when testing")

    args = parser.parse_args()

    print(args)

    if not os.path.exists(args.save_dir):

        os.makedirs(args.save_dir)

    # load data

    (x_train, y_train), (x_test, y_test) = load_mnist()

    # define model

    model, eval_model, manipulate_model = CapsNet(input_shape=x_train.shape[1:],

                                                  n_class=len(np.unique(np.argmax(y_train, 1))),

                                                  routings=args.routings)

    model.summary()

    # train or test

    if args.weights is not None:  # init the model weights with provided one

        model.load_weights(args.weights)

    if not args.testing:

        train(model=model, data=((x_train, y_train), (x_test, y_test)), args=args)

    else:  # as long as weights are given, will run testing

        if args.weights is None:

            print('No weights are provided. Will test using random initialized weights.')

        manipulate_latent(manipulate_model, (x_test, y_test), args)

        test(model=eval_model, data=(x_test, y_test), args=args)

2.网络结构

Layer (type) Output Shape Param # Connected to

==================================================================================================

input_1 (InputLayer)            (None, 28, 28, 1)    0                                           

__________________________________________________________________________________________________

conv1 (Conv2D)                  (None, 20, 20, 256)  20992      input_1[0][0]                   

__________________________________________________________________________________________________

primarycap_conv2d (Conv2D)      (None, 6, 6, 256)    5308672    conv1[0][0]                     

__________________________________________________________________________________________________

primarycap_reshape (Reshape)    (None, 1152, 8)      0          primarycap_conv2d[0][0]         

__________________________________________________________________________________________________

primarycap_squash (Lambda)      (None, 1152, 8)      0          primarycap_reshape[0][0]       

__________________________________________________________________________________________________

digitcaps (CapsuleLayer)        (None, 8, 16)        1179648    primarycap_squash[0][0]         

__________________________________________________________________________________________________

input_2 (InputLayer)            (None, 8)            0                                           

__________________________________________________________________________________________________

mask_1 (Mask)                  (None, 128)          0          digitcaps[0][0]                 

                                                                input_2[0][0]                   

__________________________________________________________________________________________________

capsnet (Length)                (None, 8)            0          digitcaps[0][0]                 

__________________________________________________________________________________________________

decoder (Sequential)            (None, 28, 28, 1)    1394960    mask_1[0][0]                   

==================================================================================================

Total params: 7,904,272

Trainable params: 7,904,272

Non-trainable params: 0

____________________________

此代码实在keras官方教程下修改而成:

https://blog.csdn.net/wyx100/article/details/80724501

用CapsNets做电能质量扰动分类(2019-08-05)的更多相关文章

  1. 单向LSTM笔记, LSTM做minist数据集分类

    单向LSTM笔记, LSTM做minist数据集分类 先介绍下torch.nn.LSTM()这个API 1.input_size: 每一个时步(time_step)输入到lstm单元的维度.(实际输入 ...

  2. 做一个logitic分类之鸢尾花数据集的分类

    做一个logitic分类之鸢尾花数据集的分类 Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例.数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都 ...

  3. MyBatis 配置/注解 SQL CRUD 经典解决方案(2019.08.15持续更新)

    本文旨在记录使用各位大神的经典解决方案. 2019.08.14 更新 Mybatis saveOrUpdate SelectKey非主键的使用 MyBatis实现SaveOrUpdate mybati ...

  4. http://tedhacker.top/2016/08/05/Spring%E7%BA%BF%E7%A8%8B%E6%B1%A0%E4%BD%BF%E7%94%A8%E6%96%B9%E6%B3%95/

    http://tedhacker.top/2016/08/05/Spring%E7%BA%BF%E7%A8%8B%E6%B1%A0%E4%BD%BF%E7%94%A8%E6%96%B9%E6%B3%9 ...

  5. 新手C#类、对象、字段、方法的学习2018.08.05

    类:具有相似属性和方法的对象的集合,如“人”是个类. 对象(实例):对象是具体的看得见摸得着的,如“张三”是“人”这个类的对象.(new Person()开辟了堆空间中,=开辟了栈空间,变量P存放在该 ...

  6. 【2019年05月20日】A股滚动市盈率PE历史新低排名

    2010年01月01日 到 2019年05月20日 之间,滚动市盈率历史新低排名. 上市三年以上的公司, 2019年05月20日市盈率在300以下的公司. 1 - 阳光照明(SH600261) - 历 ...

  7. 2019.07.05 纪中_B

    今日膜拜:czj大佬orz%%% 2019.07.05[NOIP提高组]模拟 B 组 今天做题的时候大概能判断出题人的考点,可是就是没学过...特别痛苦 T0:栈的定义,模拟就好了T1:感觉像是找规律 ...

  8. http://www.blogjava.net/xylz/archive/2013/08/05/402405.html

    http://www.blogjava.net/xylz/archive/2013/08/05/402405.html

  9. 新手C#s.Split(),s.Substring(,)以及读取txt文件中的字符串的学习2018.08.05

    s.split()用于字符串分割,具有多种重载方法,可以通过指定字符或字符串分割原字符串成为字符串数组. //s.Split()用于分割字符串为字符串数组,StringSplitOptions.Rem ...

随机推荐

  1. window open() 方法

    open() 方法用于打开一个新的浏览器窗口或查找一个已命名的窗口. 语法 window.open(URL,name,specs,replace) 参数 说明 URL 可选.打开指定的页面的URL.如 ...

  2. bug提交遵循的规则

    在提交缺陷时,需要遵循以下5个原则: 准确性:缺陷每个组成部分描述准确,不会产生误解,减少“异常”“正常”等模糊词的使用 完整性:复现该缺陷完整的步骤.截图.日志 一致性:按照一致的格式书写全部缺陷信 ...

  3. 2019牛客多校第五场 generator 1——广义斐波那契循环节&&矩阵快速幂

    理论部分 二次剩余 在数论中,整数 $X$ 对整数 $p$ 的二次剩余是指 $X^2$ 除以 $p$ 的余数. 当存在某个 $X$,使得式子 $X^2 \equiv d(mod \ p)$ 成立时,称 ...

  4. 005_STM32程序移植之_RC522读卡模块

    1. 测试环境:STM32C8T6 2. 测试模块:RC522读卡模块 3. 测试接口: RC522读卡模块: VCC------------------3.3V GND--------------- ...

  5. 五十七.分布式ELK平台、ES安装 、 扩展插件 、Kibana安装

    1. ES集群安装 准备1台虚拟机 部署elasticsearch第一个节点 访问9200端口查看是否安装成功   1ELK是日志分析平台,不是一款软件,而是一整套解决方案,是三个软件产品的首字母缩写 ...

  6. 如何更改电脑ip

    首先打开控制面板==>点击网络和internet==>点击网络和共享中心==>点击更改适配器设置==>右键无线连接或宽带连接(视情况而定)==>属性==>双击ipv ...

  7. MySQL查询top N记录

    下面以查询每门课程分数最高的学生以及成绩为例,演示如何查询 top N记录.下图是测试数据,表结构和相关 insert 脚本见<常用SQL之日期格式化和查询重复数据>. 使用自连接[推荐] ...

  8. AcWing:241. 楼兰图腾(树状数组逆序对)

    在完成了分配任务之后,西部314来到了楼兰古城的西部. 相传很久以前这片土地上(比楼兰古城还早)生活着两个部落,一个部落崇拜尖刀(‘V’),一个部落崇拜铁锹(‘∧’),他们分别用V和∧的形状来代表各自 ...

  9. Js 之复制到剪贴板 clipboard.js

    一.下载 https://github.com/zenorocha/clipboard.js/archive/master.zip 二.Demo示例 <!DOCTYPE html> < ...

  10. Java安全(加密、摘要、签名、证书、SSL、HTTPS)

    对于一般的开发人员来说,很少需要对安全领域内的基础技术进行深入的研究,但是鉴于日常系统开发中遇到的各种安全相关的问题,熟悉和了解这些安全技术的基本原理和使用场景还是非常必要的.本文将对非对称加密.数字 ...