遗传算法python实现
最近看了一下遗传算法,使用轮盘赌选择染色体,使用单点交叉,下面是代码实现(python3)
import numpy as np
import random
from scipy.optimize import fsolve
import matplotlib.pyplot as plt
import heapq # 求染色体长度
def getEncodeLength(decisionvariables, delta):
# 将每个变量的编码长度放入数组
lengths = []
for decisionvar in decisionvariables:
uper = decisionvar[1]
low = decisionvar[0]
# res()返回一个数组
res = fsolve(lambda x: ((uper - low) / delta - 2 ** x + 1), 30)
# ceil()向上取整
length = int(np.ceil(res[0]))
lengths.append(length)
# print("染色体长度:", lengths)
return lengths # 随机生成初始化种群
def getinitialPopulation(length, populationSize):
chromsomes = np.zeros((populationSize, length), dtype=np.int)
for popusize in range(populationSize):
# np.random.randit()产生[0,2)之间的随机整数,第三个参数表示随机数的数量
chromsomes[popusize, :] = np.random.randint(0, 2, length)
return chromsomes # 染色体解码得到表现形的解
def getDecode(population, encodelength, decisionvariables, delta):
# 得到population中有几个元素
populationsize = population.shape[0]
length = len(encodelength)
decodeVariables = np.zeros((populationsize, length), dtype=np.float)
# 将染色体拆分添加到解码数组decodeVariables中
for i, populationchild in enumerate(population):
# 设置起始点
start = 0
for j, lengthchild in enumerate(encodelength):
power = lengthchild - 1
decimal = 0
for k in range(start, start + lengthchild):
# 二进制转为十进制
decimal += populationchild[k] * (2 ** power)
power = power - 1
# 从下一个染色体开始
start = lengthchild
lower = decisionvariables[j][0]
uper = decisionvariables[j][1]
# 转换为表现形
decodevalue = lower + decimal * (uper - lower) / (2 ** lengthchild - 1)
# 将解添加到数组中
decodeVariables[i][j] = decodevalue
return decodeVariables # 得到每个个体的适应度值及累计概率
def getFitnessValue(func, decode):
# 得到种群的规模和决策变量的个数
popusize, decisionvar = decode.shape
# 初始化适应度值空间
fitnessValue = np.zeros((popusize, 1))
for popunum in range(popusize):
fitnessValue[popunum][0] = func(decode[popunum][0], decode[popunum][1])
# 得到每个个体被选择的概率
probability = fitnessValue / np.sum(fitnessValue)
# 得到每个染色体被选中的累积概率,用于轮盘赌算子使用
cum_probability = np.cumsum(probability)
return fitnessValue, cum_probability # 选择新的种群
def selectNewPopulation(decodepopu, cum_probability):
# 获取种群的规模和
m, n = decodepopu.shape
# 初始化新种群
newPopulation = np.zeros((m, n))
for i in range(m):
# 产生一个0到1之间的随机数
randomnum = np.random.random()
# 轮盘赌选择
for j in range(m):
if (randomnum < cum_probability[j]):
newPopulation[i] = decodepopu[j]
break
return newPopulation # 新种群交叉
def crossNewPopulation(newpopu, prob):
m, n = newpopu.shape
# uint8将数值转换为无符号整型
numbers = np.uint8(m * prob)
# 如果选择的交叉数量为奇数,则数量加1
if numbers % 2 != 0:
numbers = numbers + 1
# 初始化新的交叉种群
updatepopulation = np.zeros((m, n), dtype=np.uint8)
# 随机生成需要交叉的染色体的索引号
index = random.sample(range(m), numbers)
# 不需要交叉的染色体直接复制到新的种群中
for i in range(m):
if not index.__contains__(i):
updatepopulation[i] = newpopu[i]
# 交叉操作
j = 0
while j < numbers:
# 随机生成一个交叉点,np.random.randint()返回的是一个列表
crosspoint = np.random.randint(0, n, 1)
crossPoint = crosspoint[0]
# a = index[j]
# b = index[j+1]
updatepopulation[index[j]][0:crossPoint] = newpopu[index[j]][0:crossPoint]
updatepopulation[index[j]][crossPoint:] = newpopu[index[j + 1]][crossPoint:]
updatepopulation[index[j + 1]][0:crossPoint] = newpopu[j + 1][0:crossPoint]
updatepopulation[index[j + 1]][crossPoint:] = newpopu[index[j]][crossPoint:]
j = j + 2
return updatepopulation # 变异操作
def mutation(crosspopulation, mutaprob):
# 初始化变异种群
mutationpopu = np.copy(crosspopulation)
m, n = crosspopulation.shape
# 计算需要变异的基因数量
mutationnums = np.uint8(m * n * mutaprob)
# 随机生成变异基因的位置
mutationindex = random.sample(range(m * n), mutationnums)
# 变异操作
for geneindex in mutationindex:
# np.floor()向下取整返回的是float型
row = np.uint8(np.floor(geneindex / n))
colume = geneindex % n
if mutationpopu[row][colume] == 0:
mutationpopu[row][colume] = 1
else:
mutationpopu[row][colume] = 0
return mutationpopu # 找到重新生成的种群中适应度值最大的染色体生成新种群
def findMaxPopulation(population, maxevaluation, maxSize):
#将数组转换为列表
maxevalue = maxevaluation.flatten()
maxevaluelist = maxevalue.tolist()
# 找到前100个适应度最大的染色体的索引
maxIndex = map(maxevaluelist.index, heapq.nlargest(100, maxevaluelist))
index = list(maxIndex)
colume = population.shape[1]
# 根据索引生成新的种群
maxPopulation = np.zeros((maxSize, colume))
i = 0
for ind in index:
maxPopulation[i] = population[ind]
i = i + 1
return maxPopulation # 适应度函数,使用lambda可以不用在函数总传递参数
def fitnessFunction():
return lambda a, b: 21.5 + a * np.sin(4 * np.pi * a) + b * np.sin(20 * np.pi * b) def main():
optimalvalue = []
optimalvariables = [] # 两个决策变量的上下界,多维数组之间必须加逗号
decisionVariables = [[-3.0, 12.1], [4.1, 5.8]]
# 精度
delta = 0.0001
# 获取染色体长度
EncodeLength = getEncodeLength(decisionVariables, delta)
# 种群数量
initialPopuSize = 100
# 初始生成100个种群
population = getinitialPopulation(sum(EncodeLength), initialPopuSize)
# 最大进化代数
maxgeneration = 100
# 交叉概率
prob = 0.8
# 变异概率
mutationprob = 0.01
# 新生成的种群数量
maxPopuSize = 100 for generation in range(maxgeneration):
# 对种群解码得到表现形
decode = getDecode(population, EncodeLength, decisionVariables, delta)
# 得到适应度值和累计概率值
evaluation, cum_proba = getFitnessValue(fitnessFunction(), decode)
# 选择新的种群
newpopulations = selectNewPopulation(population, cum_proba)
# 新种群交叉
crossPopulations = crossNewPopulation(newpopulations, prob)
# 变异操作
mutationpopulation = mutation(crossPopulations, mutationprob)
# 将父母和子女合并为新的种群
totalpopulation = np.vstack((population, mutationpopulation))
# 最终解码
final_decode = getDecode(totalpopulation, EncodeLength, decisionVariables, delta)
# 适应度评估
final_evaluation, final_cumprob = getFitnessValue(fitnessFunction(), final_decode)
#选出适应度最大的100个重新生成种群
population = findMaxPopulation(totalpopulation, final_evaluation, maxPopuSize)
# 找到本轮中适应度最大的值
optimalvalue.append(np.max(final_evaluation))
index = np.where(final_evaluation == max(final_evaluation))
optimalvariables.append(list(final_decode[index[0][0]])) x = [i for i in range(maxgeneration)]
y = [optimalvalue[i] for i in range(maxgeneration)]
plt.plot(x, y)
plt.show() optimalval = np.max(optimalvalue)
index = np.where(optimalvalue == max(optimalvalue))
optimalvar = optimalvariables[index[0][0]]
return optimalval, optimalvar if __name__ == "__main__":
optval, optvar = main() print("f(x1,x2) = 21.5+x1*sin(4*pi*x1)+x2*sin(20*pi*x2)")
print("x1:", optvar[0])
print("X2:", optvar[1])
print("maxValue:", optval)
遗传算法python实现的更多相关文章
- 简单遗传算法-python实现
ObjFunction.py import math def GrieFunc(vardim, x, bound): """ Griewangk function &qu ...
- 萤火虫算法-python实现
FAIndividual.py import numpy as np import ObjFunction class FAIndividual: ''' individual of firefly ...
- 进化策略-python实现
ESIndividual.py import numpy as np import ObjFunction class ESIndividual: ''' individual of evolutio ...
- 和声搜索算法-python实现
HSIndividual.py import numpy as np import ObjFunction class HSIndividual: ''' individual of harmony ...
- 克隆选择算法-python实现
CSAIndividual.py import numpy as np import ObjFunction class CSAIndividual: ''' individual of clone ...
- 细菌觅食算法-python实现
BFOIndividual.py import numpy as np import ObjFunction class BFOIndividual: ''' individual of bateri ...
- 蝙蝠算法-python实现
BAIndividual.py import numpy as np import ObjFunction class BAIndividual: ''' individual of bat algo ...
- 人工免疫算法-python实现
AIAIndividual.py import numpy as np import ObjFunction class AIAIndividual: ''' individual of artifi ...
- 人工鱼群算法-python实现
AFSIndividual.py import numpy as np import ObjFunction import copy class AFSIndividual: "" ...
随机推荐
- Android Studio: 查看SDK源代码
有时候在AS里点击某个类跳转到的仍然是这个类反编译的源代码,看起来依然不舒服,今天分享个办法: 1. 查看当前编译的SDK Version: 2. 确保当前版本的SDK源码已下载: 3. 找到andr ...
- Mybatis Hibernate MiniDao 共存
Mybatis MiniDao共存问题 - 国内版 Binghttps://cn.bing.com/search?q=Mybatis+MiniDao%E5%85%B1%E5%AD%98%E9%97%A ...
- Python监控rabbitmq的代码
author:headsen chen date: 2019-07-26 17:22:24 notice: 个人原创 import requests, json, time, datetime fr ...
- 002-06-RestTemplate-请求示例-form、json、multipart、okhttp3
一.概述 请求示例集合 服务端:https://github.com/bjlhx15/common-study.git 中的 http-client-webserver 服务端:RequestBody ...
- Qt编写自定义控件66-光晕时钟
一.前言 在上一篇文章写了个高仿WIN10系统的光晕日历,这次来绘制一个光晕的时钟,也是在某些网页上看到的效果,时分秒分别以进度条的形式来绘制,而且这个进度条带有光晕效果,中间的日期时间文字也是光晕效 ...
- AI - TensorFlow - 示例04:过拟合与欠拟合
过拟合与欠拟合(Overfitting and underfitting) 官网示例:https://www.tensorflow.org/tutorials/keras/overfit_and_un ...
- Input.GetMouseButtonDown 在fixedupdate中会出现丢失问题,在update中则完全没这个问题
Input.GetMouseButtonDown 在fixedupdate中会出现丢失问题,在update中则完全没这个问题
- 【GStreamer开发】GStreamer播放教程03——pipeline的快捷访问
目的 <GStreamer08--pipeline的快捷访问>展示了一个应用如何用appsrc和appsink这两个特殊的element在pipeline中手动输入/提取数据.playbi ...
- velocity 自定义工具类接入
网上的教程几乎都是同一篇: velocity 自定义工具类 - eggtk - CSDN 博客 但是教程有不完善的地方,我就补充一下. 补充: 引入的jar包和版本要一致.我们项目中因为没有定义确切版 ...
- 知识点-Spark小节
Spark处理字符串日期的max和min的方式Spark处理数据存储到Hive的方式Spark处理新增列的方式map和udf.functionsSpark处理行转列pivot的使用Python 3.5 ...