链接:

https://codeforces.com/contest/1228/problem/B

题意:

Suppose there is a h×w grid consisting of empty or full cells. Let's make some definitions:

ri is the number of consecutive full cells connected to the left side in the i-th row (1≤i≤h). In particular, ri=0 if the leftmost cell of the i-th row is empty.

cj is the number of consecutive full cells connected to the top end in the j-th column (1≤j≤w). In particular, cj=0 if the topmost cell of the j-th column is empty.

In other words, the i-th row starts exactly with ri full cells. Similarly, the j-th column starts exactly with cj full cells.

These are the r and c values of some 3×4 grid. Black cells are full and white cells are empty.

You have values of r and c. Initially, all cells are empty. Find the number of ways to fill grid cells to satisfy values of r and c. Since the answer can be very large, find the answer modulo 1000000007(109+7). In other words, find the remainder after division of the answer by 1000000007(109+7).

思路:

枚举每个位置的情况, 挨个乘起来即可.

代码:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9+7; int r[1100], c[1100];
int h, w; bool Check(int x, int y, int op)
{
if (y == 1 && r[x] == 0 && op == 1)
return false;
if (x == 1 && c[y] == 0 && op == 1)
return false;
if (y == r[x]+1 && op == 1)
return false;
if (x == c[y]+1 && op == 1)
return false;
if (y <= r[x] && op == 0)
return false;
if (x <= c[y] && op == 0)
return false;
return true;
} int main()
{
cin >> h >> w;
for (int i = 1;i <= h;i++)
cin >> r[i];
for (int i = 1;i <= w;i++)
cin >> c[i];
int res = 1;
for (int i = 1;i <= h;i++)
{
for (int j = 1;j <= w;j++)
{
int tmp = 0;
if (Check(i, j, 0))
tmp++;
if (Check(i, j, 1))
tmp++;
// cout << i << ' ' << j << ' ' << tmp << endl;
res = (res*tmp)%MOD;
}
}
printf("%d\n", res); return 0;
}

Codeforces Round #589 (Div. 2) B. Filling the Grid的更多相关文章

  1. Codeforces Round #589 (Div. 2) Another Filling the Grid (dp)

    题意:问有多少种组合方法让每一行每一列最小值都是1 思路:我们可以以行为转移的状态 附加一维限制还有多少列最小值大于1 这样我们就可以不重不漏的按照状态转移 但是复杂度确实不大行(减了两个常数卡过去的 ...

  2. Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理

    Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理 [Problem Description] 在\(n\times n\) ...

  3. Codeforces Round #589 (Div. 2)

    目录 Contest Info Solutions A. Distinct Digits B. Filling the Grid C. Primes and Multiplication D. Com ...

  4. Codeforces Round #589 (Div. 2) (e、f没写)

    https://codeforces.com/contest/1228/problem/A A. Distinct Digits 超级简单嘻嘻,给你一个l和r然后寻找一个数,这个数要满足的条件是它的每 ...

  5. Codeforces Round #589 (Div. 2) E. Another Filling the Grid(DP, 组合数学)

    链接: https://codeforces.com/contest/1228/problem/E 题意: You have n×n square grid and an integer k. Put ...

  6. Codeforces Round #566 (Div. 2) A. Filling Shapes

    链接: https://codeforces.com/contest/1182/problem/A 题意: You have a given integer n. Find the number of ...

  7. Codeforces Round 589 (Div. 2) 题解

    Is that a kind of fetishism? No, he is objectively a god. 见识了一把 Mcdic 究竟出题有多神. (虽然感觉还是吹过头了) 开了场 Virt ...

  8. Codeforces Round #589 (Div. 2) D. Complete Tripartite(染色)

    链接: https://codeforces.com/contest/1228/problem/D 题意: You have a simple undirected graph consisting ...

  9. Codeforces Round #589 (Div. 2) C - Primes and Multiplication(数学, 质数)

    链接: https://codeforces.com/contest/1228/problem/C 题意: Let's introduce some definitions that will be ...

随机推荐

  1. Hadoop 之 HDFS API操作

    1. 文件上传 @Slf4j public class HDFSClient { @Test public void testCopyFromLocalFile() throws Exception{ ...

  2. poj1410(判断线段和矩形是否相交)

    题目链接:https://vjudge.net/problem/POJ-1410 题意:判断线段和矩形是否相交. 思路:注意这里的相交包括线段在矩形内,因此先判断线段与矩形的边是否相交,再判断线段的两 ...

  3. Java入门请不要放弃,学习路线以及侧重点分析

    前言: ●众多的语言,到底哪一门才是适合我的? ●我们为什么要学习Java语言呢? ●Java学习路线 我们可以通过今年最新的TIOBE编程语言排行榜看到,JAVA在"昨天".和& ...

  4. Http请求头和响应头(Get和Post)

    HTTP简介 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文本到本地浏览器的传送 ...

  5. Linux上面mount 域控的目录 超时 然后提示 error的解决办法

    mount error(112): Host is down 故障解决 https://blog.csdn.net/lepton126/article/details/89447713 之前查到过 这 ...

  6. Scala当中parallelize并行化的用法

    [学习笔记] parallelize并行化集合是根据一个已经存在的Scala集合创建的RDD对象.集合的里面的元素将会被拷贝进入新创建出的一个可被并行操作的分布式数据集.例如:val rdd03 = ...

  7. 洛谷P2659 美丽的序列 单调栈模板

    P2659 美丽的序列 题目链接 https://www.luogu.org/problemnew/show/P2659 题目描述 为了研究这个序列的美丽程度,GD定义了一个序列的"美丽度& ...

  8. Photon Server 实现注册与登录(一) --- Hibernate整合到项目中

    本系列实现目的:基于Photon Server实现注册于登录 一.拷贝Nbibernate项目的文件到MyGamerServer项目中. 二.数据库新建表,结构如下 三.修改文件名和配置 (1).将拷 ...

  9. php实现算法

    二分法查找(已排序) @params  $arr 查找的数组  $start 开始查找的下标  $end 结束查找的下标  $value 查找的值 function bin_search($arr,$ ...

  10. nasm 使用总结

    1,编译 nasm -f bin myfile.asm -o myfile  生成目标文件 nasm -f bin myfile.asm -l myfile   生成清单文件 2,快速开始 nasm是 ...