[BZOJ3514] Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES)

题意

\(N\) 个点 \(M\) 条边的无向图,\(K\) 次询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数。

部分数据强制在线.

\(1\le N,M,K\le200,000\)

题解

有点意思的LCT题.

原题好像不强制在线于是可以回滚莫队+带撤销并查集水过去.

我们考虑暴力: 把 \([l,r]\) 内的所有点依次加入并查集, 每次若成功合并两个联通块则将答案 \(-1\).

在这种情况下, 一条边会在什么情况下对答案作出什么贡献? 显然是当两条边连接的两个点在左边的合法边都连过之后依然不联通的情况下会造成答案减少 \(1\).

考虑快速计算上面的贡献. 容易发现对于某条边 \(e\), 依次将它左侧的边加入图中, 一旦在某个边 \(e'\) 加入后 \(e\) 两边的点已经被联通, 那么继续加下去一定也是联通的. 又因为查询是将一整段区间的边加入图中, 所以一旦 \(e\) 和 \(e'\) 都被查询区间包含, 则 \(e\) 不会对答案作出贡献. 否则一定会对答案造成贡献.

于是只要我们对于所有 \(e\) 都预处理出 \(e'\) 的位置, 我们就可以通过查询 \([l,r]\) 内小于 \(l\) 的值的个数解决. 这个问题显然主席树/分块均可解决.

至于预处理, 我们可以使用LCT. 过程类似于水管局长. 从左到右依次加边, 如果加入边 \((u,v)\) 时出环了, 那么树上从 \(u\) 到 \(v\) 的路径上最早加入的边就是我们要求的. Splay上维护一下代表边的点的位置就好了(边权转点权的普通操作, 加点)

以及好像把点断掉的时候并不用存这个点代表的边是什么...把这个点Splay到根然后把左右子树直接断掉就好了...

以及黄学长&wulala的变量名真的是生动形象

参考代码

#include <bits/stdc++.h>
#define _O0 __attribute__((optimize("O0"))) const int MAXN=200010; struct LCT{
#define lch chd[0]
#define rch chd[1]
#define kch chd[k]
#define xch chd[k^1]
struct Node{
int val;
bool rev;
Node* prt;
Node* min;
Node* chd[2];
Node(int val):val(val),rev(false),prt(NULL),min(this),chd{NULL,NULL}{}
inline bool isRoot(){
return this->prt==NULL||(this->prt->lch!=this&&this->prt->rch!=this);
}
inline _O0 void Flip(){
if(this!=NULL){
std::swap(this->lch,this->rch);
this->rev=!this->rev;
}
}
inline void PushDown(){
if(this->rev){
this->lch->Flip();
this->rch->Flip();
this->rev=false;
}
}
inline void Maintain(){
this->min=this;
if(this->lch&&this->lch->min->val<this->min->val)
this->min=this->lch->min;
if(this->rch&&this->rch->min->val<this->min->val)
this->min=this->rch->min;
}
};
std::vector<Node*> N;
LCT(int n):N(n+1){
for(int i=1;i<=n;i++)
N[i]=new Node(INT_MAX);
}
void Rotate(Node* root,int k){
Node* tmp=root->xch;
root->PushDown();
tmp->PushDown();
tmp->prt=root->prt;
if(!root->isRoot()){
if(root->prt->lch==root)
root->prt->lch=tmp;
else
root->prt->rch=tmp;
}
root->xch=tmp->kch;
if(root->xch)
root->xch->prt=root;
tmp->kch=root;
root->prt=tmp;
root->Maintain();
tmp->Maintain();
} void Splay(Node* root){
while(!root->isRoot()){
int k=root->prt->lch==root;
if(root->prt->isRoot())
Rotate(root->prt,k);
else{
int d=root->prt->prt->lch==root->prt;
Rotate(k==d?root->prt->prt:root->prt,k);
Rotate(root->prt,d);
}
}
} void Expose(Node* root){
Splay(root);
root->PushDown();
if(root->rch){
root->rch=NULL;
root->Maintain();
}
} void Access(Node* root){
Expose(root);
Splay(root);
while(root->prt){
Splay(root->prt);
root->prt->PushDown();
root->prt->rch=root;
root->prt->Maintain();
Splay(root);
}
} void Evert(Node* root){
Access(root);
root->Flip();
} Node* FindRoot(Node* root){
Access(root);
Node* ans=root;
ans->PushDown();
while(ans->lch){
ans->PushDown();
ans=ans->lch;
}
Splay(ans);
return ans;
} void Link(Node* a,Node* b){
Evert(b);
b->prt=a;
} void Cut(Node* a,Node* b){
Evert(a);
Access(b);
b->PushDown();
b->lch->prt=NULL;
b->lch=NULL;
b->Maintain();
} int AddEdge(int a,int b,int val){
if(a==b)
return val;
int ret=0;
if(FindRoot(N[a])==FindRoot(N[b])){
Evert(N[a]);
Access(N[b]);
Node* min=N[b]->min;
ret=N[b]->min->val;
Splay(min);
min->lch->prt=NULL;
min->rch->prt=NULL;
}
N.push_back(new Node(val));
Link(*N.rbegin(),N[a]);
Link(*N.rbegin(),N[b]);
return ret;
}
#undef lch
#undef rch
#undef kch
#undef xch
}; struct SegTree{
struct Node{
int l;
int r;
int sum;
Node* lch;
Node* rch;
Node(int l,int r):l(l),r(r),sum(0),lch(NULL),rch(NULL){
if(l!=r){
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
}
}
Node(Node* ptr){
*this=*ptr;
}
void Insert(int x){
++this->sum;
if(l!=r){
if(x<=this->lch->r)
(this->lch=new Node(this->lch))->Insert(x);
else
(this->rch=new Node(this->rch))->Insert(x);
}
}
};
std::vector<Node*> N;
SegTree(int n){
N.push_back(new Node(0,n));
}
void Insert(int x){
N.push_back(new Node(*N.rbegin()));
(*N.rbegin())->Insert(x);
}
int Query(int l,int r,int x){
return Query(N[l-1],N[r],x);
}
int Query(Node* aux,Node* root,int x){
if(0<=root->l&&root->r<=x)
return root->sum-aux->sum;
else{
int ans=0;
if(0<=root->lch->r)
ans+=Query(aux->lch,root->lch,x);
if(root->rch->l<=x)
ans+=Query(aux->rch,root->rch,x);
return ans;
}
}
}; int n,m,q,opt;
int lastans;
int ntr[MAXN]; int main(){
scanf("%d%d%d%d",&n,&m,&q,&opt);
LCT* lct=new LCT(n);
SegTree* T=new SegTree(m);
for(int i=1;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
ntr[i]=lct->AddEdge(a,b,i);
}
for(int i=1;i<=m;i++)
T->Insert(ntr[i]);
for(int i=0;i<q;i++){
int l,r;
scanf("%d%d",&l,&r);
l^=opt*lastans;
r^=opt*lastans;
printf("%d\n",lastans=n-T->Query(l,r,l-1));
}
return 0;
}

[BZOJ 3514]Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES)的更多相关文章

  1. BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )

    从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...

  2. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  3. BZOJ 3514 Codechef MARCH14 GERALD07加强版

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3514 题意:给出一个图m条边.每次询问只加入编号在区间[L,R]之内的边有多少连通 ...

  4. BZOJ 3514: Codechef MARCH14 GERALD07加强版(LCT + 主席树)

    题意 \(N\) 个点 \(M\) 条边的无向图,询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数. \(K\) 次询问强制在线. \(1\le N,M,K \le 200,000\ ...

  5. 【刷题】BZOJ 3514 Codechef MARCH14 GERALD07加强版

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  6. BZOJ 3514 Codechef MARCH14 GERALD07加强版 Link-Cut-Tree+划分树

    题目大意: 给定n个点m条边的无向图.求问当图中仅仅有[编号在[l,r]区间内]的边存在时图中的联通块个数 强制在线 注意联通块是指联通了就是同一块,不是Tarjan求的那种块 看到这题的那一刻我就想 ...

  7. BZOJ 3514: Codechef MARCH14 GERALD07加强版 (LCT维护最大生成树+主席树)

    题意 给出nnn个点,mmm条边.多次询问,求编号在[l,r][l,r][l,r]内的边形成的联通块的数量,强制在线. 分析 LCTLCTLCT维护动态最大生成树,先将每条边依次加进去,若形成环就断掉 ...

  8. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  9. 【LCT+主席树】BZOJ3514 Codechef MARCH14 GERALD07加强版

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2023  Solved: 778 ...

随机推荐

  1. subset II

    Subsets II Given a collection of integers that might contain duplicates, nums, return all possible s ...

  2. Linux网络编程--多线程实现echo服务器与客户端“一对多”功能,是网络编程的“Hello World!”

    在linux平台下,用多线程实现echo服务器与客户端“一对多”(即是一台服务器可以响应多个客户端的请求).本人写了个demo,和大家一起分享,有不足的地方,请多多指教,我是壮壮熊. 编译时,在后面加 ...

  3. c之指针与数组(1)

    1.指针与地址 一元运算符&可用于取一个对象的地址.例如:int i=1;&i就是计算机地址. 一元运算符*是间接寻址或者间接引用运算符.例如: int x=1,y:int ip*: ...

  4. Java中用双缓冲技术消除闪烁

    在Java编写具有连贯变化的窗口程序时,通常的办法是在子类中覆盖父类的paint(Graphics)方法,在方法中使用GUI函数实现窗口重绘的过程.连贯变换的窗口会不断地调用update(Graphi ...

  5. C#RabbitMQ基础学习笔记

    RabbitMQ基础学习笔记(C#代码示例) 一.定义: MQ是MessageQueue,消息队列的简称(是流行的开源消息队列系统,利用erlang语言开发).MQ是一种应用程序对应用程序的通信方法. ...

  6. C# 配置文件操作类

    注意添加引用:System.Configuration: using System; using System.Collections.Generic; using System.Text; usin ...

  7. 百度搜索URL参数含义

    序号 参数 含义 1 tn 搜索框所属网站.比如 tn=sitehao123,就是 http://www.hao123.com/ 左上那个搜索框(指通过什么方式到达百度首页搜索界面;) 2 s?wd ...

  8. Web前端性能优化的三个偏方

    首先牢骚几句...这一次性能优化针对的模块,初次开发阶段客户给的时间就非常少,俩月时间跳过设计一边需求分析一边编码,最后干出6000+的代码行.最终结果嘛,呵呵,除开一堆bug不说,性能就是个非常大的 ...

  9. array(1) { [0]=> int(5) }和array(1) { [0]=> string(1) "5" }

    php array数组: $arrayValue = array(5); $arrayValue = array('5'); 的不同之处 一个是整型一个是字符串型 array(1) { [0]=> ...

  10. 15、IO (转换流、缓冲流)

    转换流概述 * A: 转换流概述 * a: 转换流概述 * OutputStreamWriter 是字符流通向字节流的桥梁:可使用指定的字符编码表,将要写入流中的字符编码成字节 * 将字符串按照指定的 ...