基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题
 
给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数。 例如N = 10,只有1不是2 3 5 7的倍数。
Input
输入1个数N(1 <= N <= 10^18)。
Output
输出不是2 3 5 7的倍数的数共有多少。
Input示例
10
Output示例
1
经典的容斥定理,
公式 |AUBUC|=|A|+|B|+|C|-|A^B|-|A^C|-|B^C|+|A^B^C|;
即等式左边是集合的并集,集合右边为所有可能出现的集合的交集,组合为新集合的集合个数为奇数的为正,否则为负。

#include<bits/stdc++.h>
using namespace std;
#define LL long long
LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);}
LL lcm(LL a,LL b){return a/gcd(a,b)*b;}
int main()
{
LL n;
while(cin>>n){LL ans=0;
ans=n/2+n/3+n/5+n/7-n/6-n/10-n/14-n/15-n/21-n/35+n/30
+n/42+n/70+n/105-n/210;
cout<<n-ans<<endl;

}
return 0;
}

51nod1284容斥定理的更多相关文章

  1. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理

    B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...

  3. hdu_5213_Lucky(莫队算法+容斥定理)

    题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...

  4. How Many Sets I(容斥定理)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...

  5. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  6. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

  7. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  8. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. xplan-打印执行顺序

    -- ------------------------------------------------------------------------------------------------- ...

  2. android使用library

      http://www.vogella.com/tutorials/AndroidLibraryProjects/article.html     介绍support lib使用 http://de ...

  3. Java Naming and Directory Interface (JNDI) Java 命名和目录接口

    https://www.oracle.com/technetwork/java/jndi/index.html Lesson: Overview of JNDI (The Java™ Tutorial ...

  4. day09:Servlet详解

        day09 Servlet概述 生命周期方法: void init(ServletConfig):出生之后(1次): void service(ServletRequest request, ...

  5. 关于uuid与自增列的选择

    关于uuid与自增列的选择 在db交流群里看到有人提问,说他的userName 登录名是唯一的,可以用其做主键嘛,如果用自增列,那又要多一列. 后面又说,如果要用主键ID,用uuid会不会好一些呢?作 ...

  6. JAVA问题定位跟踪技术

    常用的JAVA调试技巧: 线程堆栈解读 性能瓶颈分析 远程调试 内存泄露检测 常用工具集: proc工具集 系统跟踪命令truss/strace Core文件管理coreadm 进程状态监控prsta ...

  7. Spring中基于Java的配置@Configuration和@Bean用法

    spring中为了减少xml中配置,可以声明一个配置类(例如SpringConfig)来对bean进行配置. 一.首先,需要xml中进行少量的配置来启动Java配置: <?xml version ...

  8. HDU3579:Hello Kiki(解一元线性同余方程组)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...

  9. cocos进阶教程(3)Lua加密技术

    如果开发者不想让游戏中的资源或脚本文件轻易的暴露给其他人,一般会采用对文件进行加密的方式来保护文件或资源被盗用.Quick-Cocos2d-x 为开发者提供了xxtea加密算法,用来对脚本文件及资源进 ...

  10. SpringMVC—概述

    mvc容器的实例化: http://blog.csdn.net/lin_shi_cheng/article/details/50686876 Spring的启动过程: 1: 对于一个web应用,其部署 ...