Conv
folly/Conv.h
folly/Conv.h
is a one-stop-shop for converting values across types. Its main features are simplicity of the API (only the names to
and toAppend
must be memorized), speed (folly is significantly faster, sometimes by an order of magnitude, than comparable APIs), and correctness.
Synopsis
All examples below are assume to have included folly/Conv.h
and issued using namespace folly;
You will need:
- // To format as text and append to a string, use toAppend.
- fbstring str;
- toAppend(2.5, &str);
- CHECK_EQ(str, "2.5");
- // Multiple arguments are okay, too. Just put the pointer to string at the end.
- toAppend(" is ", , " point ", , &str);
- CHECK_EQ(str, "2.5 is 2 point 5");
- // You don't need to use fbstring (although it's much faster for conversions and in general).
- std::string stdStr;
- toAppend("Pi is about ", 22.0 / , &stdStr);
- // In general, just use to<TargetType>(sourceValue). It returns its result by value.
- stdStr = to<std::string>("Variadic ", "arguments also accepted.");
- // to<fbstring> is 2.5x faster than to<std::string> for typical workloads.
- str = to<fbstring>("Variadic ", "arguments also accepted.");
Integral-to-integral conversion
Using to<Target>(value)
to convert one integral type to another will behave as follows:
- If the target type can accommodate all possible values of the source value, the value is implicitly converted. No further action is taken. Example:
- short x;
- unsigned short y;
- ...
- auto a = to<int>(x); // zero overhead conversion
- auto b = to<int>(y); // zero overhead conversion
- Otherwise,
to
inserts bounds checks and throwsstd::range_error
if the target type cannot accommodate the source value. Example:
- short x;
- unsigned short y;
- long z;
- ...
- x = ;
- auto a = to<unsigned short>(x); // fine
- x = -;
- a = to<unsigned short>(x); // THROWS
- z = ;
- auto b = to<int>(z); // fine
- z += ;
- b = to<int>(z); // THROWS
- auto b = to<unsigned int>(z); // fine
Anything-to-string conversion
As mentioned, there are two primitives for converting anything to string: to
and toAppend
. They support the same set of source types, literally by definition (to
is implemented in terms of toAppend
for all types). The call toAppend(value, &str)
formats and appends value
to str
whereas to<StringType>(value)
formats value
as a StringType
and returns the result by value. Currently, the supported StringType
s are std::string
and fbstring
Both toAppend
and to
with a string type as a target support variadic arguments. Each argument is converted in turn. FortoAppend
the last argument in a variadic list must be the address of a supported string type (no need to specify the string type as a template argument).
Integral-to-string conversion
Nothing special here - integrals are converted to strings in decimal format, with a '-' prefix for negative values. Example:
- auto a = to<fbstring>();
- assert(a == "");
- a = to<fbstring>(-);
- assert(a == "-456");
The conversion implementation is aggressively optimized. It converts two digits at a time assisted by fixed-size tables. Converting a long
to an fbstring
is 3.6x faster than using boost::lexical_cast
and 2.5x faster than using sprintf
even though the latter is used in conjunction with a stack-allocated constant-size buffer.
Note that converting integral types to fbstring
has a particular advantage compared to converting to std::string
No integral type (<= 64 bits) has more than 20 decimal digits including sign. Since fbstring
employs the small string optimization for up to 23 characters, converting an integral to fbstring
is guaranteed to not allocate memory, resulting in significant speed and memory locality gains. Benchmarks reveal a 2x gain on a typical workload.
char
to string conversion
Although char
is technically an integral type, most of the time you want the string representation of 'a'
to be "a"
, not 96
That's why folly/Conv.h
handles char
as a special case that does the expected thing. Note that signed char
and unsigned char
are still considered integral types.
Floating point to string conversion
folly/Conv.h
uses V8's double conversion routines. They are accurate and fast; on typical workloads, to<fbstring>(doubleValue)
is 1.9x faster than sprintf
and 5.5x faster than boost::lexical_cast
(It is also 1.3x faster than to<std::string>(doubleValue)
const char*
to string conversion
For completeness, folly/Conv.h
supports const char*
including i.e. string literals. The "conversion" consists, of course, of the string itself. Example:
- auto s = to<fbstring>("Hello, world");
- assert(s == "Hello, world");
Anything from string conversion (i.e. parsing)
folly/Conv.h
includes three kinds of parsing routines:
to<Type>(const char* begin, const char* end)
rigidly converts the range [begin, end) toType
These routines have drastic restrictions (e.g. allow no leading or trailing whitespace) and are intended as an efficient back-end for more tolerant routines.to<Type>(stringy)
convertsstringy
toType
Valuestringy
may be of typeconst char*
,StringPiece
,std::string
, orfbstring
(Technically, the requirement is thatstringy
implicitly converts to aStringPiece
to<Type>(&stringPiece)
parses with progress information: givenstringPiece
of typeStringPiece
it parses as much as possible from it as typeType
and altersstringPiece
to remove the munched characters. This is easiest clarified by an example:
- fbstring s = " 1234 angels on a pin";
- StringPiece pc(s);
- auto x = to<int>(&pc);
- assert(x == );
- assert(pc == " angels on a pin";
Note how the routine ate the leading space but not the trailing one.
Parsing integral types
Parsing integral types is unremarkable - decimal format is expected, optional '+'
or '-'
sign for signed types, but no optional '+'
is allowed for unsigned types. The one remarkable element is speed - parsing typical long
values is 6x faster than sscanf
. folly/Conv.h
uses aggressive loop unrolling and table-assisted SIMD-style code arrangement that avoids integral division (slow) and data dependencies across operations (ILP-unfriendly). Example:
- fbstring str = " 12345 ";
- assert(to<int>(str) == );
- str = " 12345six seven eight";
- StringPiece pc(str);
- assert(to<int>(&pc) == );
- assert(str == "six seven eight");
Parsing floating-point types
folly/Conv.h
uses, again, V8's double-conversion routines as back-end. The speed is 3x faster than sscanf
and 1.7x faster than in-home routines such as parse<double>
But the more important detail is accuracy - even if you do code a routine that works faster than to<double>
chances are it is incorrect and will fail in a variety of corner cases. Using to<double>
is strongly recommended.
Note that if the string "NaN" (with any capitalization) is passed to to<double>
then NaN
is returned, which can be tested for as follows:
- fbstring str = "nan"; // "NaN", "NAN", etc.
- double d = to<double>(str);
- if (std::isnan(d)) {
- // string was a valid representation of the double value NaN
- }
Note that passing "-NaN" (with any capitalization) to to<double>
also returns NaN
.
Note that if the strings "inf" or "infinity" (with any capitalization) are passed to to<double>
then infinity
is returned, which can be tested for as follows:
- fbstring str = "inf"; // "Inf", "INF", "infinity", "Infinity", etc.
- double d = to<double>(str);
- if (std::isinf(d)) {
- // string was a valid representation of one of the double values +Infinity
- // or -Infinity
- }
Note that passing "-inf" or "-infinity" (with any capitalization) to to<double>
returns -infinity
rather than +infinity
. The sign of the infinity
can be tested for as follows:
- fbstring str = "-inf"; // or "inf", "-Infinity", "+Infinity", etc.
- double d = to<double>(str);
- if (d == std::numeric_limits<double>::infinity()) {
- // string was a valid representation of the double value +Infinity
- } else if (d == -std::numeric_limits<double>::infinity()) {
- // string was a valid representation of the double value -Infinity
- }
Note that if an unparseable string is passed to to<double>
then an exception is thrown, rather than NaN
being returned. This can be tested for as follows:
- fbstring str = "not-a-double"; // Or "1.1.1", "", "$500.00", etc.
- double d;
- try {
- d = to<double>(str);
- } catch (const std::range_error &) {
- // string could not be parsed
- }
Note that the empty string (""
) is an unparseable value, and will cause to<double>
to throw an exception.
Non-throwing interfaces
tryTo<T>
is the non-throwing variant of to<T>
. It returns an Expected<T, ConversionCode>
. You can think of Expected
as like an Optional<T>
, but if the conversion failed, Expected
stores an error code instead of a T
.
tryTo<T>
has similar performance as to<T>
when the conversion is successful. On the error path, you can expect tryTo<T>
to be roughly three orders of magnitude faster than the throwing to<T>
and to completely avoid any lock contention arising from stack unwinding.
Here is how to use non-throwing conversions:
- auto t1 = tryTo<int>(str);
- if (t1.hasValue()) {
- use(t1.value());
- }
Expected
has a composability feature to make the above pattern simpler.
- tryTo<int>(str).then([](int i) { use(i); });
Conv的更多相关文章
- matlab中的卷积——filter,conv之间的区别
%Matlab提供了计算线性卷积和两个多项式相乘的函数conv,语法格式w=conv(u,v),其中u和v分别是有限长度序列向量,w是u和v的卷积结果序列向量. %如果向量u和v的长度分别为N和M,则 ...
- mysql的conv的用法
这次的ctf比赛用到这个函数,这里记录一下 题目禁了ascii , ord 那就使用conv 这个函数是用来将字符转换进制的,例如将a转成ASCII码(换个说法就是将16进制的a换成10进制) 那就直 ...
- (原)caffe中的conv
转载请注明出处: https://www.cnblogs.com/darkknightzh/p/10486686.html conv总体调用流程如下图所示: 说明:带o的为输出,如Wo代表输出宽度:带 ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- [转载] Conv Nets: A Modular Perspective
原文地址:http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ Conv Nets: A Modular Perspective Posted ...
- MATLAB卷积运算(conv、conv2、convn)解释
1 conv(向量卷积运算) 所谓两个向量卷积,说白了就是多项式乘法.比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列, ...
- boost-字符编码转换:使用conv
Windows下的字符集转换可以使用WideCharToMultiByte/ MultiByteToWideChar,Linux下字符集转换可以使用iconv()函数,下面为使用boost的conv来 ...
- tensorflow 之常见模块conv,bn...实现
使用tensorflow时,会发现tf.nn,tf.layers, tf.contrib模块有很多功能是重复的,尤其是卷积操作,在使用的时候,我们可以根据需要现在不同的模块.但有些时候可以一起混用. ...
- MySQL中特有的函数CONV函数
CONV函数:用于对数字进行转换,比如将十进制的数字转化成二进制,参数格式convert(N,frombse,tobase) 将数字N从frombase进制转化成tobase进制,并且以字符串的格式返 ...
随机推荐
- git submodule临时分支;以及git reset使用
submodule 已经建立好了一个gitlab submodule形式的repo: 在repo A下面有一个submodule B, A --> B. clone -b branch [rep ...
- R语言画图小结
本文以1950年到2010年期间我国的火灾统计数据为例,数据如下所示: (0)加载数据 data<-read.csv("E:\\MyDocument\\p\\Data\\1950~20 ...
- jar插件应用
Gson(解析json) 作用:在servlet层中解析json 1:导入jar包 gson-2.2.4.jar 例如:Gson gson = new Gson(); ...
- Android Studio之高德地图实现定位和3D地图显示
在应用开发中,地图开发是经常需要使用的“组件”,国内比较出名的是就是百度地图和高德地图. 此博客讲的是高德地图实现定位和3D地图显示,并标注相应位置,话不多说,先看看效果,在上代码. 效果如图: 首先 ...
- CSS padding 属性
定义和用法 padding 简写属性在一个声明中设置所有内边距属性. 说明 这个简写属性设置元素所有内边距的宽度,或者设置各边上内边距的宽度.行内非替换元素上设置的内边距不会影响行高计算:因此,如果一 ...
- Linux 下升级JDK 1.7到1.8
1.下载1.8的jdk rpm文件到linux系统 2.执行rpm -ivh jdk-8u151-linux-x64.rpm 选项详解: -a:查询所有套件: -b<完成阶段><套件 ...
- GVIM设置背景颜色
首先找到GVim的安装目录,在安装目录下你可以发现一个_vimrc文件,使用文本编辑器打开后在里面添加两行代码即可:代码如下set gfn=Courier_New:h14colorscheme tor ...
- 作业要求20181023-4 Alpha阶段第2周/共2周 Scrum立会报告+燃尽图 01
作业要求[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284] 版本控制:https://git.coding.net/liuyy08 ...
- vue.js 源代码学习笔记 ----- decoder
/* @flow */ let decoder export function decode (html: string): string { decoder = decoder || documen ...
- pyqt5事件与鼠标事件
一,每个事件都被封装成相应的类: pyqt中,每个事件类型都被封装成相应的事件类,如鼠标事件为QMouseEvent,键盘事件为QKeyEvent等.而它们的基类是QEvent. 二,基类QEvent ...