题面

传送门

前置芝士

Prufer codes与Generalized Cayley's Formula

题解

不行了脑子已经咕咕了连这么简单的数数题都不会了……

首先这两个特殊点到底是啥并没有影响,我们假设它们为\(1,2\)好了

首先,我们需要枚举\(1,2\)之间的边数\(i\)

我们需要考虑这中间的\(i-1\)个点是哪些点,而且它们的顺序对答案有影响,方案数乘上\(A_{n-2}^{i-1}\)

这\(i\)条边的的和要为\(m\),根据隔板法,方案数要乘上\({m-1\choose i-1}\)

剩下的边取值随便,方案数乘上\(m^{n-1-i}\)

我们要把\(n\)个点分成\(i\)棵树,且如果把中间的点依次标号为\(3,4,...,i+1\),它们所在的树要互不相同,根据\(Generalized\ Cayley's\ Formula\),方案数为\((i+1)n^{n-i-2}\)

综上,答案为

\[Ans=\sum_{i=1}^{n-1}A_{n-2}^{i-1}{m-1\choose i-1}m^{n-1-i}(i+1)n^{n-i-2}
\]

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e6+5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int fac[N],ifac[N],n,m,p,invn,invm,rn,rm,res;
inline int C(R int n,R int m){return 1ll*fac[n]*ifac[m]%P*ifac[n-m]%P;}
inline int A(R int n,R int m){return mul(fac[n],ifac[n-m]);}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m),p=max(n,m);
fac[0]=ifac[0]=1;fp(i,1,p)fac[i]=mul(fac[i-1],i);
ifac[p]=ksm(fac[p],P-2);fd(i,p-1,1)ifac[i]=mul(ifac[i+1],i+1);
invn=ksm(n,P-2),invm=ksm(m,P-2),p=min(n-1,m),rn=rm=1;
fp(i,1,n-2)rn=mul(rn,n),rm=mul(rm,m);rn=mul(rn,invn);
fp(i,1,p)res=add(res,1ll*A(n-2,i-1)*C(m-1,i-1)%P*rn%P*rm%P*(i+1)%P),rn=mul(rn,invn),rm=mul(rm,invm);
printf("%d\n",res);
return 0;
}

CF1109DSasha and Interesting Fact from Graph Theory(数数)的更多相关文章

  1. Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学

    Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...

  2. CF1109D Sasha and Interesting Fact from Graph Theory

    CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...

  3. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  4. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html 题意 所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离 ...

  5. Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)

    题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权 ...

  6. Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)

    大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...

  7. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  8. HDU6029 Graph Theory 2017-05-07 19:04 40人阅读 评论(0) 收藏

    Graph Theory                                                                 Time Limit: 2000/1000 M ...

  9. Graph Theory

    Description Little Q loves playing with different kinds of graphs very much. One day he thought abou ...

随机推荐

  1. Cannot find class [org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer]

    解决方案:添加spring-webmvc好多人都不知道org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer这个类到底 ...

  2. 【328】Python 控制鼠标/键盘+图片识别 综合应用

    本文是基于 [267]实现跨网络传数据 的基础上的,由于在弹出 putty 之后,需要手动输入命令(pass.sh.get.sh)来实现数据的传递,另外就是处理完之后需要手动关闭 putty,本文解决 ...

  3. Website蝴蝶结构

    [Website蝴蝶结构] 网页的其正向链接连结在一起表现为一种蝴蝶结结构. 1.蝴蝶结中部(SCC, Strongly Connected Componnet) 这种网页彼此相连. 2.蝴蝶结左部( ...

  4. java基础三 [深入多态,接口和多态](阅读Head First Java记录)

    抽象类和抽象方法 1.抽象类的声明方法,在前面加上抽象类的关键词abstract abstract class canine extends animal{      public void roam ...

  5. SqlMapConfig.xml配置文件中的mapper映射器标签

    Mapper配置的几种方式: 1. <mapper resource=" "/> 使用相对于类路径的资源 如:<mapper resource="com ...

  6. NOSQL之Redis、MongDB、Habase、Cassandra的介绍与比较

    一.Redis介绍     1.1Redis优点 (1)Redis拥有非常丰富的数据结构: (2)Redis提供事务的功能,可以保证一串命令的原子性,中间不会被任何打断. (3)数据存储在内存中,读写 ...

  7. 第六章 Windows应用程序对键盘与鼠标的响应 P121 6-8

    基于键盘与鼠标应用的程序设计 一.实验目的 1.掌握键盘与鼠标在应用程序中的消息响应机制.   二.实验内容及步骤 实验任务 1.熟悉键盘的消息响应: 2.熟悉鼠标的消息响应: 实验内容 设计一个窗口 ...

  8. Dockerfile RUN, CMD & ENTRYPOINT

    Dockerfile RUN, CMD & ENTRYPOINT 在使用Dockerfile创建image时, 有几条指令比较容易混淆, RUN, CMD, ENTRYPOINT. RUN是在 ...

  9. 查找mysql的my.cnf位置

    1. which mysqld /user/local/mysql/bin/mysqld --verbose --help |grep -A 1 'Default options'

  10. eclipse中maven install提示编码GBK的不可映射字符

    今天在eclipse中使用Maven编译项目源代码时,结果如下了如下的错误 在Java源码中没有提示任何报错,即便是改掉项目编码也是不行,如下图所示: