【codeforces914G】Sum the Fibonacci FWT+FST(快速子集变换)
给出一个长度为 $n$ 的序列 $\{s\}$ ,对于所有满足以下条件的五元组 $(a,b,c,d,e)$ :
- $1\le a,b,c,d,e\le n$ ;
- $(s_a|s_b)\&s_c\&(s_d\text{^}s_e)=2^i$ ,其中 $i$ 为非负整数 ;
- $s_a\&s_b=0$ 。
求 $f(s_a|s_b)\times f(s_c)\times f(s_d\text{^}s_e)$ 的和模 $10^9+7$,其中 $f(i)$ 表示斐波那契数列的第 $i$ 项( $f(0)=0,f(1)=1$ )。
题解
FWT+FST(Fast-Subset-Transform)
显然是求 $cnt[s_a]$ 和 $cnt[s_b]$ 的子集卷积得出 $cnt[s_a|s_b]$ ,求 $cnt[s_d]$ 和 $cnt[s_e]$ 的异或卷积得出 $cnt[s_d\text{^}s_e]$ ,然后求 $cnt[s_a|s_b]\times f[s_a|s_b]$ 、$cnt[s_c]\times f[s_c]$ 、$cnt[s_d\text{^}s_e]\times f[s_d\text{^}s_e]$ 的与卷积,与卷积的 $2^i$ 项之和即为答案。
(子集卷积:$c$ 是 $a$ 和 $b$ 的子集卷积,当且仅当:$c[i]=\sum\limits_{j|k=i,j\&k=0}a[j]\times b[k]$ ,直观理解上等价于 $c[i]=\sum\limits_{j\in i}a[j]\times b[i-j]$ ,故称子集卷积)
异或卷积和与卷积可以直接使用FWT计算。
子集卷积的计算方法可以参考vfk集训队论文中提到的占位多项式法:
$j|k=i,j\&k=0$ 等价于 $j|k=i,|j|+|k|=|i|$ 。
因此求 $c'[p][i]=\sum\limits_{j|k=i,|j|+|k|=p}a[j]\times b[k]=\sum\limits_{j|k=i,|j|+|k|=p}a'[|j|][j]\times b'[|k|][k]=\sum\limits_{j|k=i,q+r=p}a'[q][j]+b'[r][k]$ ,那么 $c[i]=c'[|i|][i]$ 。
其中 $|i|$ 表示 $i$ 集合的大小,即 $i$ 二进制中 $1$ 的个数。$a'[|i|][i]=a[i]$ ,其余为0;$b'$ 同理。
那么我们对每一个 $a'[q][]$ 和 $b'[r][]$ 分别求DWT,然后进行类似背包合并的卷积,再求IDWT即可。这个部分的时间复杂度为 $O(2^{17}·17^2)$ 。
因此总的时间复杂度为 $O(2^{17}·17^2+2^{17}·17·常数)$ 。
这里我脑残了... $cnt[s_a,s_b,s_c,s_d,s_e]$ 都是一样的,因此可以减少DWT的次数... 不管了反正A了...
#include <cstdio>
#include <algorithm>
#define N 131100
#define mod 1000000007
#define inv 500000004
using namespace std;
typedef long long ll;
int s[1000010] , cnt[N];
ll fib[N] , a[18][N] , b[18][N] , c[N] , d[N] , e[N] , f[18][N];
int main()
{
int n , m = 1 , mx = 0 , k , i , j;
ll t , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &s[i]) , mx = max(mx , s[i]);
while(m <= mx) m <<= 1;
fib[1] = 1;
for(i = 2 ; i < m ; i ++ ) fib[i] = (fib[i - 1] + fib[i - 2]) % mod;
for(i = 1 ; i < m ; i ++ ) cnt[i] = cnt[i - (i & -i)] + 1;
for(i = 1 ; i <= n ; i ++ ) a[cnt[s[i]]][s[i]] ++ , b[cnt[s[i]]][s[i]] ++ , c[s[i]] ++ , d[s[i]] ++ , e[s[i]] ++ ;
for(i = 0 ; i < m ; i ++ ) c[i] = c[i] * fib[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = d[j] , d[j] = (d[j - i] - t + mod) % mod , d[j - i] = (d[j - i] + t) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = e[j] , e[j] = (e[j - i] - t + mod) % mod , e[j - i] = (e[j - i] + t) % mod;
for(i = 0 ; i < m ; i ++ ) d[i] = d[i] * e[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = d[j] , d[j] = (d[j - i] - t + mod) * inv % mod , d[j - i] = (d[j - i] + t) * inv % mod;
for(i = 0 ; i < m ; i ++ ) d[i] = d[i] * fib[i] % mod;
for(k = 0 ; k <= cnt[m - 1] ; k ++ )
{
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) a[k][j] = (a[k][j] + a[k][j - i]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) b[k][j] = (b[k][j] + b[k][j - i]) % mod;
}
for(i = 0 ; i <= cnt[m - 1] ; i ++ )
for(j = 0 ; j <= cnt[m - 1] - i ; j ++ )
for(k = 0 ; k < m ; k ++ )
f[i + j][k] = (f[i + j][k] + a[i][k] * b[j][k]) % mod;
for(k = 0 ; k <= cnt[m - 1] ; k ++ ) for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) f[k][j] = (f[k][j] - f[k][j - i] + mod) % mod;
for(i = 0 ; i < m ; i ++ ) e[i] = f[cnt[i]][i] * fib[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) c[j - i] = (c[j - i] + c[j]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) d[j - i] = (d[j - i] + d[j]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) e[j - i] = (e[j - i] + e[j]) % mod;
for(i = 0 ; i < m ; i ++ ) c[i] = c[i] * d[i] % mod * e[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) c[j - i] = (c[j - i] - c[j] + mod) % mod;
for(i = 1 ; i < m ; i <<= 1) ans = (ans + c[i]) % mod;
printf("%lld\n" , ans);
return 0;
}
【codeforces914G】Sum the Fibonacci FWT+FST(快速子集变换)的更多相关文章
- 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)
知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...
- codeforces914G Sum the Fibonacci
题目大意:给定一个长为$n$($n\leq 10^6$)的序列S,定义一个合法的五元组$(a,b,c,d,e)$合法当且仅当 $$ ( S_a \mid S_b ) and S_c and ( S_d ...
- 快速沃尔什变换(FWT) 与 快速莫比乌斯变换 与 快速沃尔什变换公式推导
后面的图片将会告诉: 如何推出FWT的公式tf 如何推出FWT的逆公式utf 用的是设系数,求系数的方法! ============================================== ...
- 快速沃尔什变换(FWT)及K进制异或卷积&快速子集变换(FST)讲解
前言: $FWT$是用来处理位运算(异或.与.或)卷积的一种变换.位运算卷积是什么?形如$f[i]=\sum\limits_{j\oplus k==i}^{ }g[j]*h[k]$的卷积形式(其中$\ ...
- CF914G Sum the Fibonacci FWT、子集卷积
传送门 一道良心的练习FWT和子集卷积的板子-- 具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \opl ...
- Codeforces914G Sum the Fibonacci(FWT)
FWT大杂烩.跟着模拟做很多次FWT即可. #include<iostream> #include<cstdio> #include<cmath> #include ...
- FWT,FST入门
0.目录 目录 0.目录 1.什么是 FWT 2. FWT 怎么做 2.1. 或卷积 2.2.与卷积 2.3.异或卷积 2.4.例题 3. FST 3.1. FST 怎么做 3.2.例题 1.什么是 ...
- CF914G Sum the Fibonacci(FWT,FST)
CF914G Sum the Fibonacci(FWT,FST) Luogu 题解时间 一堆FWT和FST缝合而来的丑陋产物. 对 $ cnt[s_{a}] $ 和 $ cnt[s_{b}] $ 求 ...
- 【CF914G】Sum the Fibonacci 快速??变换模板
[CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...
随机推荐
- poj 2079(旋转卡壳求解凸包内最大三角形面积)
Triangle Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 9060 Accepted: 2698 Descript ...
- java nio通过ByteBuffer输出文件信息
1.通过ByteBuffer的get()方法每次读取一个字节转换成char类型输出. fc = new FileInputStream("src/demo20/data.txt") ...
- JMeter怎样测试WebSocket
一.安装WebSocket取样器 1.从JMeter插件管理器官网下载: https://jmeter-plugins.org/ 把这6个jar包放到C:\JMeter\apache-jmeter-3 ...
- PHP自定义生成二维码跳转地址
比较简单的一款PHP自定义生成二维码跳转地址,手机端微信扫码,自动跳转到定义好的链接.支持自定义生成二维码尺寸.间距等. 鼠标悬浮显示二维码弹出层,离开后消失.js实现,代码如下: $(fu ...
- Elasticsearch 统计代码例子
aggs avg 平均数 最近15分钟的平均访问时间,upstream_time_ms是每次访问时间,单位毫秒 { "query": { "filtered": ...
- Amazon 成功的秘訣是…
從任何的標準去看,今日的 Amazon,都是一家超級成功的企業 — 它的線上書城和其他 B2C 電子商務業務,全球第一,年營業額超過 200 億美金.它的 AWS (Amazon Web Servic ...
- sqoop导入数据到hive表中的相关操作
1.使用sqoop创建表并且指定对应的hive表中的字段的数据类型,同时指定该表的分区字段名称 sqoop create-hive-table --connect "jdbc:oracle: ...
- mysql优化建议21条
转自: http://blog.csdn.net/waferleo/article/details/7179009 今 天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于 ...
- python爬虫调用搜索引擎及图片爬取实战
实战三-向搜索引擎提交搜索请求 关键点:利用搜索引擎提供的接口 百度的接口:wd="要搜索的内容" 360的接口:q="要搜索的内容" 所以我们只要把我们提交给 ...
- OOP 1.4 内联函数和重载函数函数参数缺省值
1.内联函数 存在的背景:函数调用存在开销(调用时候参数压栈,返回地址压栈:返回时从栈取出返回地址,跳转到返回地址.总共需要几条指令的开销).如果函数指令较少,调用多次,函数调用的开销占比大. 内联函 ...