题目描述

给出一个长度为 $n$ 的序列 $\{s\}$ ,对于所有满足以下条件的五元组 $(a,b,c,d,e)$ :

  • $1\le a,b,c,d,e\le n$ ;
  • $(s_a|s_b)\&s_c\&(s_d\text{^}s_e)=2^i$ ,其中 $i$ 为非负整数 ;
  • $s_a\&s_b=0$ 。

求 $f(s_a|s_b)\times f(s_c)\times f(s_d\text{^}s_e)$ 的和模 $10^9+7$,其中 $f(i)$ 表示斐波那契数列的第 $i$ 项( $f(0)=0,f(1)=1$ )。


题解

FWT+FST(Fast-Subset-Transform)

显然是求 $cnt[s_a]$ 和 $cnt[s_b]$ 的子集卷积得出 $cnt[s_a|s_b]$ ,求 $cnt[s_d]$ 和 $cnt[s_e]$ 的异或卷积得出 $cnt[s_d\text{^}s_e]$ ,然后求 $cnt[s_a|s_b]\times f[s_a|s_b]$ 、$cnt[s_c]\times f[s_c]$ 、$cnt[s_d\text{^}s_e]\times f[s_d\text{^}s_e]$ 的与卷积,与卷积的 $2^i$ 项之和即为答案。

(子集卷积:$c$ 是 $a$ 和 $b$ 的子集卷积,当且仅当:$c[i]=\sum\limits_{j|k=i,j\&k=0}a[j]\times b[k]$ ,直观理解上等价于 $c[i]=\sum\limits_{j\in i}a[j]\times b[i-j]$ ,故称子集卷积)

异或卷积和与卷积可以直接使用FWT计算。

子集卷积的计算方法可以参考vfk集训队论文中提到的占位多项式法:

$j|k=i,j\&k=0$ 等价于 $j|k=i,|j|+|k|=|i|$ 。

因此求 $c'[p][i]=\sum\limits_{j|k=i,|j|+|k|=p}a[j]\times b[k]=\sum\limits_{j|k=i,|j|+|k|=p}a'[|j|][j]\times b'[|k|][k]=\sum\limits_{j|k=i,q+r=p}a'[q][j]+b'[r][k]$ ,那么 $c[i]=c'[|i|][i]$ 。

其中 $|i|$ 表示 $i$ 集合的大小,即 $i$ 二进制中 $1$ 的个数。$a'[|i|][i]=a[i]$ ,其余为0;$b'$ 同理。

那么我们对每一个 $a'[q][]$ 和 $b'[r][]$ 分别求DWT,然后进行类似背包合并的卷积,再求IDWT即可。这个部分的时间复杂度为 $O(2^{17}·17^2)$ 。

因此总的时间复杂度为 $O(2^{17}·17^2+2^{17}·17·常数)$ 。

这里我脑残了... $cnt[s_a,s_b,s_c,s_d,s_e]$ 都是一样的,因此可以减少DWT的次数... 不管了反正A了...

#include <cstdio>
#include <algorithm>
#define N 131100
#define mod 1000000007
#define inv 500000004
using namespace std;
typedef long long ll;
int s[1000010] , cnt[N];
ll fib[N] , a[18][N] , b[18][N] , c[N] , d[N] , e[N] , f[18][N];
int main()
{
int n , m = 1 , mx = 0 , k , i , j;
ll t , ans = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &s[i]) , mx = max(mx , s[i]);
while(m <= mx) m <<= 1;
fib[1] = 1;
for(i = 2 ; i < m ; i ++ ) fib[i] = (fib[i - 1] + fib[i - 2]) % mod;
for(i = 1 ; i < m ; i ++ ) cnt[i] = cnt[i - (i & -i)] + 1;
for(i = 1 ; i <= n ; i ++ ) a[cnt[s[i]]][s[i]] ++ , b[cnt[s[i]]][s[i]] ++ , c[s[i]] ++ , d[s[i]] ++ , e[s[i]] ++ ;
for(i = 0 ; i < m ; i ++ ) c[i] = c[i] * fib[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = d[j] , d[j] = (d[j - i] - t + mod) % mod , d[j - i] = (d[j - i] + t) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = e[j] , e[j] = (e[j - i] - t + mod) % mod , e[j - i] = (e[j - i] + t) % mod;
for(i = 0 ; i < m ; i ++ ) d[i] = d[i] * e[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) t = d[j] , d[j] = (d[j - i] - t + mod) * inv % mod , d[j - i] = (d[j - i] + t) * inv % mod;
for(i = 0 ; i < m ; i ++ ) d[i] = d[i] * fib[i] % mod;
for(k = 0 ; k <= cnt[m - 1] ; k ++ )
{
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) a[k][j] = (a[k][j] + a[k][j - i]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) b[k][j] = (b[k][j] + b[k][j - i]) % mod;
}
for(i = 0 ; i <= cnt[m - 1] ; i ++ )
for(j = 0 ; j <= cnt[m - 1] - i ; j ++ )
for(k = 0 ; k < m ; k ++ )
f[i + j][k] = (f[i + j][k] + a[i][k] * b[j][k]) % mod;
for(k = 0 ; k <= cnt[m - 1] ; k ++ ) for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) f[k][j] = (f[k][j] - f[k][j - i] + mod) % mod;
for(i = 0 ; i < m ; i ++ ) e[i] = f[cnt[i]][i] * fib[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) c[j - i] = (c[j - i] + c[j]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) d[j - i] = (d[j - i] + d[j]) % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) e[j - i] = (e[j - i] + e[j]) % mod;
for(i = 0 ; i < m ; i ++ ) c[i] = c[i] * d[i] % mod * e[i] % mod;
for(i = 1 ; i < m ; i <<= 1) for(j = 0 ; j < m ; j ++ ) if(i & j) c[j - i] = (c[j - i] - c[j] + mod) % mod;
for(i = 1 ; i < m ; i <<= 1) ans = (ans + c[i]) % mod;
printf("%lld\n" , ans);
return 0;
}

【codeforces914G】Sum the Fibonacci FWT+FST(快速子集变换)的更多相关文章

  1. 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)

    知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...

  2. codeforces914G Sum the Fibonacci

    题目大意:给定一个长为$n$($n\leq 10^6$)的序列S,定义一个合法的五元组$(a,b,c,d,e)$合法当且仅当 $$ ( S_a \mid S_b ) and S_c and ( S_d ...

  3. 快速沃尔什变换(FWT) 与 快速莫比乌斯变换 与 快速沃尔什变换公式推导

    后面的图片将会告诉: 如何推出FWT的公式tf 如何推出FWT的逆公式utf 用的是设系数,求系数的方法! ============================================== ...

  4. 快速沃尔什变换(FWT)及K进制异或卷积&快速子集变换(FST)讲解

    前言: $FWT$是用来处理位运算(异或.与.或)卷积的一种变换.位运算卷积是什么?形如$f[i]=\sum\limits_{j\oplus k==i}^{ }g[j]*h[k]$的卷积形式(其中$\ ...

  5. CF914G Sum the Fibonacci FWT、子集卷积

    传送门 一道良心的练习FWT和子集卷积的板子-- 具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \opl ...

  6. Codeforces914G Sum the Fibonacci(FWT)

    FWT大杂烩.跟着模拟做很多次FWT即可. #include<iostream> #include<cstdio> #include<cmath> #include ...

  7. FWT,FST入门

    0.目录 目录 0.目录 1.什么是 FWT 2. FWT 怎么做 2.1. 或卷积 2.2.与卷积 2.3.异或卷积 2.4.例题 3. FST 3.1. FST 怎么做 3.2.例题 1.什么是 ...

  8. CF914G Sum the Fibonacci(FWT,FST)

    CF914G Sum the Fibonacci(FWT,FST) Luogu 题解时间 一堆FWT和FST缝合而来的丑陋产物. 对 $ cnt[s_{a}] $ 和 $ cnt[s_{b}] $ 求 ...

  9. 【CF914G】Sum the Fibonacci 快速??变换模板

    [CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...

随机推荐

  1. poj 2079(旋转卡壳求解凸包内最大三角形面积)

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 9060   Accepted: 2698 Descript ...

  2. java nio通过ByteBuffer输出文件信息

    1.通过ByteBuffer的get()方法每次读取一个字节转换成char类型输出. fc = new FileInputStream("src/demo20/data.txt") ...

  3. JMeter怎样测试WebSocket

    一.安装WebSocket取样器 1.从JMeter插件管理器官网下载: https://jmeter-plugins.org/ 把这6个jar包放到C:\JMeter\apache-jmeter-3 ...

  4. PHP自定义生成二维码跳转地址

      比较简单的一款PHP自定义生成二维码跳转地址,手机端微信扫码,自动跳转到定义好的链接.支持自定义生成二维码尺寸.间距等.    鼠标悬浮显示二维码弹出层,离开后消失.js实现,代码如下: $(fu ...

  5. Elasticsearch 统计代码例子

    aggs avg 平均数 最近15分钟的平均访问时间,upstream_time_ms是每次访问时间,单位毫秒 { "query": { "filtered": ...

  6. Amazon 成功的秘訣是…

    從任何的標準去看,今日的 Amazon,都是一家超級成功的企業 — 它的線上書城和其他 B2C 電子商務業務,全球第一,年營業額超過 200 億美金.它的 AWS (Amazon Web Servic ...

  7. sqoop导入数据到hive表中的相关操作

    1.使用sqoop创建表并且指定对应的hive表中的字段的数据类型,同时指定该表的分区字段名称 sqoop create-hive-table --connect "jdbc:oracle: ...

  8. mysql优化建议21条

    转自: http://blog.csdn.net/waferleo/article/details/7179009 今 天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于 ...

  9. python爬虫调用搜索引擎及图片爬取实战

    实战三-向搜索引擎提交搜索请求 关键点:利用搜索引擎提供的接口 百度的接口:wd="要搜索的内容" 360的接口:q="要搜索的内容" 所以我们只要把我们提交给 ...

  10. OOP 1.4 内联函数和重载函数函数参数缺省值

    1.内联函数 存在的背景:函数调用存在开销(调用时候参数压栈,返回地址压栈:返回时从栈取出返回地址,跳转到返回地址.总共需要几条指令的开销).如果函数指令较少,调用多次,函数调用的开销占比大. 内联函 ...