相当于将线段划分成两个集合使集合内线段不相交,并且可以发现线段相交等价于逆序对。也即要将原序列划分成两个单增序列。由dilworth定理,如果存在长度>=3的单减子序列,无解,可以先判掉。

  这个时候有两种显然的暴力。

  将点集划分成两部分使内部无边显然就是二分图,于是第一种暴力是在逆序对之间连边,答案即为2连通块个数,因为每个连通块都可以交换黑白点。问题在于暴力连边是n2的,而显然实际有用的边其实只有O(n)条。考虑这样一种连边方式:每个点向后缀最小值、前缀第一个比他大的点连边。瞎归纳归纳就可以证明连这些边就够了。这个前缀第一个比他大的随便找都行,比如弄个bit。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],pre[N],suf[N],fa[N],tree[N],cnt;
inline void chkmax(int &x,int y){if (a[y]>a[x]) x=y;}
inline void chkmin(int &x,int y){if (a[y]<a[x]) x=y;}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
void ins(int k,int x){while (k<=n) tree[k]=min(tree[k],x),k+=k&-k;}
int query(int k){int s=n;while (k) s=min(s,tree[k]),k-=k&-k;return s;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4881.in","r",stdin);
freopen("bzoj4881.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) fa[i]=i,a[i]=read(),tree[i]=n+;a[]=,a[n+]=n+;
pre[]=;for (int i=;i<=n;i++) chkmax(pre[i]=pre[i-],i);
suf[n+]=n+;for (int i=n;i>=;i--) chkmin(suf[i]=suf[i+],i);
for (int i=;i<=n;i++)
if (pre[i]!=i&&suf[i]!=i) {cout<<;return ;}
else
{
if (suf[i]!=i) fa[find(i)]=find(suf[i]);
if (pre[i]!=i) fa[find(i)]=find(query(n+-a[i]));
ins(n+-a[i],i);
}
for (int i=;i<=n;i++) if (find(i)==i) cnt++;
int ans=;while (cnt--) ans=(ans<<)%P;
cout<<ans;
return ;
}

  另一种暴力是一个显然的dp,即设f[i][j]为dp到第i位时,不包含i的集合的最大值是第j个数的方案数。则有f[i][i-1]=Σf[i-1][j] (a[i]>a[j],j<i-1),f[i][j]=f[i-1][j] (a[i]>a[i-1],j<i-1)。将dp数组看成一维的,显然就可以用线段树优化了,即开一棵以a[]为下标的线段树,对f[i][i-1]在线段树上查询前缀更新,如果a[i]<a[i-1]就给整个线段树清零。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],L[N<<],R[N<<],tree[N<<],lazy[N<<];
void update(int k){tree[k]=,lazy[k]=;}
void down(int k){update(k<<),update(k<<|),lazy[k]=;}
void up(int k){tree[k]=(tree[k<<]+tree[k<<|])%P;}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r) return;
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
}
void add(int k,int p,int x)
{
if (L[k]==R[k]) {tree[k]+=x;return;}
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (p<=mid) add(k<<,p,x);
else add(k<<|,p,x);
up(k);
}
int query(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return tree[k];
if (lazy[k]) down(k);
int mid=L[k]+R[k]>>;
if (r<=mid) return query(k<<,l,r);
else if (l>mid) return query(k<<|,l,r);
else return (query(k<<,l,mid)+query(k<<|,mid+,r))%P;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4881.in","r",stdin);
freopen("bzoj4881.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
build(,,n);add(,,);
for (int i=;i<=n;i++)
{
int x=query(,,a[i]);
if (a[i]<a[i-]) update();
add(,a[i-],x);
}
cout<<tree[];
return ;
}

BZOJ4881 线段游戏(二分图+树状数组/动态规划+线段树)的更多相关文章

  1. st表、树状数组与线段树 笔记与思路整理

    已更新(2/3):st表.树状数组 st表.树状数组与线段树是三种比较高级的数据结构,大多数操作时间复杂度为O(log n),用来处理一些RMQ问题或类似的数列区间处理问题. 一.ST表(Sparse ...

  2. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

  3. [BZOJ 3196] 213平衡树 【线段树套set + 树状数组套线段树】

    题目链接:BZOJ - 3196 题目分析 区间Kth和区间Rank用树状数组套线段树实现,区间前驱后继用线段树套set实现. 为了节省空间,需要离线,先离散化,这样需要的数组大小可以小一些,可以卡过 ...

  4. [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】

    题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...

  5. POJ 1195 Mobile phones (二维树状数组或线段树)

    偶然发现这题还没A掉............速速解决了............. 树状数组和线段树比较下,线段树是在是太冗余了,以后能用树状数组还是尽量用......... #include < ...

  6. 【BZOJ3196】二逼平衡树(树状数组,线段树)

    [BZOJ3196]二逼平衡树(树状数组,线段树) 题面 BZOJ题面 题解 如果不存在区间修改操作: 搞一个权值线段树 区间第K大--->直接在线段树上二分 某个数第几大--->查询一下 ...

  7. BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)

    题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...

  8. P3157 [CQOI2011]动态逆序对(树状数组套线段树)

    P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...

  9. HDU 4247 Pinball Game 3D(cdq 分治+树状数组+动态规划)

    Pinball Game 3D Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. crontab练习题

    Crontab练习题 每周一到周六的凌晨3点20分,运行tar命令对/etc/目录进行存档另存,存储位置为/backups/etc-YYYY-MM-DD.tar.gz 20 3 * * 1-6 /us ...

  2. Scratch3.0设计的插件系统(上篇)

    我们每个人在内心深处都怀有一个梦想: 希望创造出一个鲜活的世界,一个宇宙.处在我们生活的中间.被训练为架构师的那些人,拥有这样的渴望: 在某一天,在某一个地方,因为某种原因,创造出了一个不可思议的.美 ...

  3. exe4j 使用记录(一):下载、安装及注册

    一.下载 exe4j下载地址:https://www.ej-technologies.com/download/exe4j/files 进入下载页面,可以选择exe4j版本. 选择完成后,下载即可. ...

  4. Charles的安装与破解

    Charles启动需要安装java环境,不知配置了jdk就可以,而是需要java环境,否则下载后点击启动会提示找不到suitable java 1 安装java环境 安装java环境是在https:/ ...

  5. 经典教程|10 分钟速成 Python3

    Python 是由吉多·范罗苏姆(Guido Van Rossum)在 90 年代早期设计. 它是如今最常用的编程语言之一.它的语法简洁且优美,几乎就是可执行的伪代码. 注意:这篇教程是基于 Pyth ...

  6. xshell—实现Linux与Windows之间的文件传递

    在Windows系统上,通过xshell连接Linux系统. 第一种使用方式:从Linux系统上下载文件到Windows系统. 准备工作: $ sudo apt-get install lrzsz 安 ...

  7. ES6的新特性(7)——函数的扩展

    函数的扩展 函数参数的默认值 基本用法 ES6 之前,不能直接为函数的参数指定默认值,只能采用变通的方法. function log(x, y) { y = y || 'World'; console ...

  8. 扩展Lucas定理 扩展Lucas板子

    题意概述:多组询问,给出N,K,M,要求回答C(N,K)%M,1<=N<=10^18,1<=K<=N,2<=M<=10^6 分析: 模数不为质数只能用扩展Lucas ...

  9. Android工程方法数超过64k,The number of method references in a .dex file cannot exceed 64K.

    最近将一个老的Eclipse项目转到Android Studio后,用gradle添加了几个依赖,项目可以make,但是一旦run就报错 Error:The number of method refe ...

  10. Linux下查看apache连接数

    1.查看apache当前并发访问数: netstat -an | grep ESTABLISHED | wc -l 对比httpd.conf中MaxClients的数字差距多少. 2.查看有多少个进程 ...