bzoj2820-GCD
题意
\(T\le 10^4\) 次询问 \(n,m\) ,求
\]
分析
这题还是很有趣的。设 \(n\le m\) 。
\sum _{i=1}^n\sum_{j=1}^m[gcd(i,j)\text { is prime}]&=\sum _{i=1}^n\sum _{j=1}^m\sum _k [k\text { is prime}][gcd(i,j)=k] \\
&=\sum _{i=1}^n\sum _{j=1}^m\sum _{k|i,k|j}[k\text { is prime}]\sum _{d|\frac{i}{k},d|\frac{j}{k}}\mu(d) \\
&=\sum _{d=1}^n\mu (d)\sum _{k=1}^n[k\text { is prime}]\sum _{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum _{j=1}^{\lfloor\frac{m}{k}\rfloor}[d|i,d|j] \\
&=\sum _{d=1}^n\mu (d)\sum _{k=1}^n[k\text { is prime}]\lfloor\frac{n}{kd}\rfloor \lfloor\frac{m}{kd}\rfloor \\
&=\sum _{i=1}^n\lfloor\frac{n}{i}\rfloor \lfloor\frac{m}{i}\rfloor\sum _{k|i,k\text { is prime}}\mu(\frac{i}{k})
\end{aligned}
\]
令 \(f(x)=\sum _{k|x,k\text {is prime }}\mu (x/k)\) ,我们有:
\]
\(f(x)\) 可以在线性筛的过程中顺便处理出来,求前缀和就可以做到每次询问 \(O(\sqrt n)\) 。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long giant;
inline int read() {
int x=0,f=1;
char c=getchar_unlocked();
for (;!isdigit(c);c=getchar_unlocked()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar_unlocked()) x=x*10+c-'0';
return x*f;
}
const int maxn=1e7+1;
bool np[maxn];
int p[maxn],ps=0,mu[maxn],f[maxn];
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
mu[1]=1,f[1]=0;
for (int i=2;i<maxn;++i) {
if (!np[i]) p[++ps]=i,mu[i]=-1,f[i]=1;
for (int j=1,tmp;j<=ps && (tmp=i*p[j])<maxn;++j) {
np[tmp]=true;
if (i%p[j]) mu[tmp]=-mu[i],f[tmp]=mu[i]-f[i]; else {
mu[tmp]=0;
f[tmp]=mu[i];
break;
}
}
}
for (int i=2;i<maxn;++i) f[i]+=f[i-1];
int T=read();
while (T--) {
int n=read(),m=read();
if (n>m) swap(n,m);
giant ans=0;
for (int i=1,j;i<=n;i=j+1) {
j=min(n/(n/i),m/(m/i));
ans+=(giant)(f[j]-f[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return 0;
}
bzoj2820-GCD的更多相关文章
- 【Learning】 莫比乌斯反演
莫比乌斯反演 对于两个定义域为非负整数的函数\(F(n)\)和\(f(n)\) 若满足:\(F(n)=\sum\limits_{d|n}f(d)\),则反演得到\(f(n)=\sum\limi ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- 【BZOJ2820】YY的GCD
[BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- 【反演复习计划】【bzoj2820】YY的GCD
这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...
- BZOJ2820/LG2257 YY的GCD 莫比乌斯反演
问题描述 BZOJ2820 LG2257 题解 求 \(\sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{m}{[gcd(i,j)==p]}}\) ,其中 \(p\)为 ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
- [BZOJ2820][Luogu2257]YY的GCD
BZOJ权限题 Luogu 题意:给出n,m,求: \[\sum_{i=1}^{n}\sum_{j=1}^{m}[\gcd(i,j)\mbox{为质数}]\] 多组数据,\(n\le 10^7\) s ...
随机推荐
- 20155305乔磊2016-2017-2《Java程序设计》第二周学习总结
20155305乔磊 2016-2017-2 <Java程序设计>第二周学习总结 教材学习内容总结 第三章学习了基本类型 整数(short.int.long) 字节(byte) 浮点数(f ...
- #20155319 2016-2017-2 《Java程序设计》第3周学习总结
20155319 2016-2017-2 <Java程序设计>第3周学习总结 教材学习内容总结 第三周的学习量还是很大的,需要学习的内容更难了而且 量也变多了,所以投入了更多的时间到Jav ...
- BZOJ1010_玩具装箱toy_KEY
题目传送门 这道题可以很快想到暴力DP的做法: f[i]=min(f[i],f[j]+(C[i]-C[j]+i-j--L)^); 但是数据范围有50000,这就需要用斜率优化了. 我们设S[i]=C[ ...
- Zabbix学习之路(七)之Nginx的状态监控
1.安装nginx [root@linux-node2 ~]# yum install -y nginx [root@linux-node2 ~]# mkdir /etc/zabbix/zabbix_ ...
- LVS入门篇(一)之ARP协议
1.概念 地址解析协议,即ARP(AddressResolutionProtocol),是根据IP地址获取物理MAC地址的一个TCP/IP协议.主机发送信息时将包含目标IP地址的ARP请求广播到网络上 ...
- Redis实现之客户端
客户端 Redis服务器是典型的一对多服务器程序:一个服务器可以与多个客户端建立网络连接,每个客户端可以向服务器发送命令请求,而服务器则接收并处理客户端发送的命令请求,并向客户端返回命令回复.通过使用 ...
- 使用iChecker的注意事项
1. 要先引用jquery 2. ichecker分好多主题,每个主题带好几种颜色,在配置的时候最好指定一下. 比如引入了square主题的blue颜色演示,配置项中checkboxClass就写ic ...
- C#特性的简单介绍
特性应该我们大多接触过,比喻经常使用的[Obsolete],[Serializable]等下面我就主要介绍一个特性的一些用法 摘自MSDN定义:用以将元数据或声明信息与代码(程序集.类型.方法.属性等 ...
- 探究linux设备驱动模型之——platform虚拟总线(一)
说在前面的话 : 设备驱动模型系列的文章主要依据的内核版本是2.6.32的,因为我装的Linux系统差不多就是这个版本的(实际上我用的fedora 14的内核版本是2.6.35.13的.) ...
- oracle数据库应用性能优化经验(培训讲义)
这是我给公司同事做的内部培训ppt的讲义,给大家分享一下.这是培训大纲,ppt在找地方上传,等找到了会把链接发在这里 . 暂时放在csdn上,赚点下载积分:https://download.csdn. ...